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1. Introduction

We have now covered three-fifths of the material from this course. While
in many ways, this course has been cumulative and we have revisited much
of the earlier material repeatedly, there are things that have been left out.
In this packet, we will review some of the problem-types that we have come
across and methods of finding their solution.

We will also take this time to combine our new skills, such as our knowl-
edge of trigonometric identities and transcendental functions, with some of
our old skills.

Date: August 7, 2012.
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2. Elementary Functions

We started by reviewing basic factoring and graphing linear equations.
We then worked on developing the algebraic and graphical qualities of poly-
nomials. We learned to solve any quadratic equation that we will ever see
(any cubic too, though that’s much harder). Later came the Factor Theo-
rem and the Rational Root Theorem, allowing us to solve more. This all
culminated with rational functions. This first set of exercises covers this
material.

2.1. Factoring and Solving Quadratics.

Example 2.1. One tool that we use with high frequency is factoring. We
cannot get away from factoring, it turns out. Many tools revolve around
factoring. We’ll look at three major factoring tools here.

(1) (x+ y)2 = x2 + 2xy + y2 and (x− y)2 = x2 − 2xy + y2

(2) (x− y)(x+ y) = x2 − y2
(3) Completing the square

Example 2.2. We can use (x + y)2 = x2 = 2xy + y2 and (x − y)2 =
x2−2xy+ y2 both ways. For example, when we see an expression that we’d
like to expand, like (sinx+cosx)2, we can immediately say that it is sin2 x+
cos2 x+ 2 sinx cosx = 1 + 2 sinx cosx without any FOILing. (further, if we
are exceptionally clever, we might remember that 2 sinx cosx = sin(2x)).

On the other had, we can factor functions quickly too. For example, when
we are asked to find the roots of e2x−4ex+4, we recognize this as (ex−2)2.
Thus there is a double root at x = ln 2.

Exercise 2.3. Expand the following without directly multiplying it out:

• (3x+ 2y)2

• (5x− 4)2

• (x+ cosx)2

• (secx− sinx)2

• (ex + e−x)2

Exercise 2.4. Factor the following:

• cos2 x+ 2 cosx tanx+ tanx x
• 2e2x + 6

√
2ex + 9

• sin2 x+ 8 sinx+ 16
• 2 + x2 + x−2

Example 2.5. It is usually very easy to see cases where we have (x−y)(x+y)
and rewrite it as x2 − y2, but we sometimes need to approach it in the
opposite direction. For example, if we want to find the roots of sin2 x− 1/2,
we can do this quickly and easily with this factoring method. sin2 x−1/2 =
(sinx− 1/

√
2)(sinx+ 1/

√
2), and thus the solutions are x = π/4 + nπ/2.

Exercise 2.6. Factor the following:
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• 3x2 − 2y2 (just because everything starts as ’squares’ doesn’t mean
that they’re the squares of pretty numbers)
• 4e2x − 9
• 2 tanx− 4

Further, if we want to factor over the complex numbers, we might notice
that x2 + y2 = (x+ iy)(x− iy). So we cam factor the following:

• 4x2 + 9y2

• 2x2 + 16y2

Example 2.7. There is a general form for completing the square that always

works. If we have x2 + ax + b, we can note that x2 + ax + a2

4 −
a2

4 + b =

(x+ a
2 )2− a2

4 +b. For example, x2+3x+5 = x2+3x+ 9
4−

9
4+5 = (x+ 3

2)2− 9
4+5.

If we believe this pattern, we could skip the middle.
For example, if we had x2+10x+3, we could write this as (x+ 10

2 )2−25+3
without any of the middle expansions.

Exercise 2.8. Complete the square on the following:

• x2 + 18x+ 2
• x2 + 5x+ 3
• sin2 x+ 3 sinx+ 2
• 2x2 + 3x + 5 (the task here is to remember how to deal with the

leading 2)

The goal is for these factoring techniques to feel like second nature. The
less one needs to think about them, the better. The task of finding roots
is largely equivalent to factoring, due to the Factor Theorem. In short, this
says that if p(x) is a polynomial and p(r) = 0, then p(x) = (x−r)q(x) where
q(x) is a smaller degree polynomial. Thus we can pull out a linear factor of
(x− r).

Example 2.9. Anytime we see a quadratic, we should be happy. We can
solve quadratics, always. Through factoring or the quadratic formula, we can
always solve quadratics. In fact, we can solve them quickly. One shouldn’t
need to spend more than a minute on a quadratic in the form ax2+bx+c = 0.

Exercise 2.10. Solve the following quadratics:

• x2 + 5x+ 18 = 0
• 4x2 + 3x+ 2 = 0
• 2 sin2 x+ 3 sinx+ 1 = 0
• 3 cos2 x+ 8 sinx+ 1 = 0
• 2e4x − 13e2x + 1 = 0

In cases (like above), remember that cos2 x+ sin2 x = 1, and this can be
modified to relate csc2 x to cot2 x, or to relate sec2 x to tan2 x. It’s important
to recognize ’hidden quadratics,’ and to do the necessary work to transform
a quadratic into a form that you can solve.

Exercise 2.11. Solve the following quadratics:
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• 5 cot2 x+ 14 cscx+ 1 = 0
• 2 cos2 x+ 4 sinx+ 2 = 0
• tan2 x+ 5 secx+ 3 = 0
• (x− 2)2 + 2x+ 4 = (x− 1)
• (x− 3)3 + (x− 1)(x+ 1) = x3 + 1
•
√
x− 2 +

√
x+ 2 = 2

•
√
x+ 1 +

√
x− 4 =

√
x+ 5

2.2. Polynomial Inequalities. Perhaps the best way of solving polyno-
mial inequalities is to find its roots, make a sign chart, and just test on
each side of each root. It is almost certainly the fastest. This is our general
method:

Example 2.12. When we see a polynomial inequality p(x) ≥ 0, we find
the roots r1, . . . , rn of the polynomial. We then draw a number line, and
see if the polynomial is positive or negative between each pair of roots. As
polynomials are continuous, they will only change signs at roots. We use
this to decide on our inequality. As an aside, I want to mention that this is
one of the easiest types of questions to merit partial credit as long as you
show your work, if you’re in a graded situation.

Example 2.13. Let us solve the quadratic inequality 3x2 + 4x ≥ 1. First,
we gather ever everything to one side. So we want to solve 3x2 + 4x −
1 ≥ 0. Where are the roots of the quadratic 3x2 + 4x − 1? This doesn’t
immediately seem to factor nicely, so we use the quadratic formula: the

roots are x+, x− =
−4±

√
16 + 12

6
. These roots split the real line into the

three regions (−∞, x−), (x−, x+), (x+,∞). We need to check the sign of our
polynomial on each of the three regions. Using, for example, −100, 0, 100,
we see that the signs go + − +. Thus the inequality’s solution is x in(
−∞, −4−

√
28

6

]
and

[
−4 +

√
28

6
,∞

)
.

Exercise 2.14. Solve the following quadratic inequalities.

• 8x2 − x > 3
• 9x2 + 6x > 1
• 4x2 ≥ 4

The same idea works for higher degree polynomials as well. The task is
the same: find the roots, make a number line, identify regions where the
polynomial is positive and negative, and use this to find your answer. Also
remember - it is not always the case that the sign switches positive
negative positive negative.

Exercise 2.15. Solve the following polynomial inequalities. These can be
done with factoring.

• x2 + 4x− 6 ≥ 6
• 2x2 + x− 15 < 0
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• −x2 + 2x+ 3 ≥ 0
• x3 − x2 − 16x+ 16 ≤ 0
• x3 − x2 − 16x+ 16 ≥ 36
• x4 − x2 − 20 > 0

Exercise 2.16. Solve the following polynomial inequalities. You may have
to use other tools, such as the rational root theorem or factor theorem, to
proceed here.

• x4 − x3 − 2x− 4 > 0
• x5 − x4 − 3x3 + 5x2 − 2x

2.3. Rational Functions. In many ways, understanding rational functions
comes down to understanding polynomials. Once we understand polynomi-
als and, in particular, identifying where they are positive, negative, or zero,
we know a tremendous amount about rational functions.

The general method of attacking rational functions is to find the zeroes of
the numerator and denominator, set up a sign chart with these zeroes as the
important places, and to identify where the rational function will be positive
and where it will be negative. Zeroes of the numerator lead to zeroes of the
rational function. Zeroes of the denominator lead to vertical asymptotes
of the rational function. If there is the same zero in the numerator and
denominator, then there might be a hole.

The only bit remaining with respect to rational functions is to understand
their limiting behavior. This falls into a few different categories: there might
be a horizontal asymptote, a slant asymptote, or no asymptote.

Example 2.17. Consider the rational function f(x) =
x2 + 3x+ 5

x3 + x+ 1
, and

suppose we want to find its limiting behavior. If we think of really large x,
then x3 is much larger than x2. In general, if the degree of the denominator
is greater than the degree of the numerator, than the limiting behavior is a
horizontal asymptote at y = 0. That is the case here.

Example 2.18. Consider the rational function g(x) =
x3 + 3x+ 1

4x3 + 1
, and

suppose we want to find its limiting behavior. If we think of really large
x this time, we can’t use the same trick as above. Now the degree of the
numerator and denominator are the same. But for really large x, everything
except the x3 and 4x3 terms matter less and less. In general, if the degrees
of the denominator and numerator are the same, then there is a horizontal
asymptote. For g(x), we expect g(x) ≈ 1

4 for really large x, as the x3 term

of the numerator gets divided by 4x3 in the denominator. This leads to the
general fact that the horizontal asymptote in these cases will be at y = a

b ,
where a is the leading coefficient of the numerator and b is the leading
coefficient of the denominator.
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Example 2.19. Consider the rational function h(x) =
x3 + 3x+ 1

x2 + 1
. The

degree of the numerator is exactly one more than the degree of the denom-

inator. Using polynomial long division, we see that h(x) = x +
2x+ 1

x2 + 1
, so

that for large x the polynomial behaves just like x (the
2x+ 1

x2 + 1
→ 0 as x

gets big). We call the line x in this case the slant asymptote, and we find it
in general by performing polynomial long division.

Example 2.20. Consider the rational function j(x) =
x5 + 3x2 + 1

x2 + 1
. Poly-

nomial long division would reveal limiting behavior similar to a cubic, as
the degree of the numerator is 5 and the degree of the denominator is only
2. We don’t care about ’curved’ asymptotes in this course, so all that we
care about here is whether the function goes to ∞ or −∞ as x → ∞ and
x→ −∞.

Exercise 2.21. Find the zeroes, vertical asymptotes, holes, horizontal asymp-
totes, and slant asymptotes of the following rational functions. Sketch the
results.

(1)
x2 − 5x+ 4

x2 − 4

(2)
2x2 − 5x+ 2

4x2 − 2x− 12

(3)
2x3 − x2 − 2x+ 1

x2 + 3x+ 2

(4)
2x3 + x2 − 8x− 4

x2 − 4x+ 2
(similar to, but not the same as, the previous)

Exercise 2.22. Let’s see a sort of way in which rational functions might
come up. Certain professions, such as any sort of manufacturing or chemi-
cal engineer, need to worry about particular types of problems that we call
”mixing problems.” Suppose, for instance, that a large tank contains 50 liters
of a 75%/25% water/sodium benzoate solution. We want a larger concen-
tration of sodium benzoate, but it’s challenging and expensive to get pure
sodium benzoate. But it’s easy to get a 75%/25% sodium benzoate/water
mixture. So we pour x liters of this new mixture into the tank.

• Show that the new concentration C (starting at 0.25 and changing
because we are adding liquid with a 0.75 concentration) is given by

C =
3x+ 50

4(x+ 50)
• Find the limiting behavior of this system (for positive x only - the

implied domain of this model is for x positive only. Why is that?).
• Does this limiting behavior make sense?

In fact, mixing problems are very important. But to be fair, this would
be one of the easiest mixing problems out there. Chemical engineers, for



REVIEW EXERCISES 7

example, have to work with different concentrations of different materials
interacting with each other - and different concentrations change the rate of
chemical reaction and interaction as well. There is some intense math there
- but this is where it starts.

Exercise 2.23. In my work, I happen to use rational functions quite a bit.
There are some miraculous properties of rational functions. For better or
worse, we look at two of them here.

(1) Often, math asks meta-type questions: instead of ”what is the solu-
tion?” it might ask ”when is this solveable?” For example, for what
k is the equation

x2 + (1− 3k)x+ (2− k) = 0 (2.1)

solveable for real-valued x? To do this, ’solve’ for k. You’ll get a
rational function. Find the range of that rational function, and this
will be the exact vales of k for which equation (2.1) is solveable.

(2) This introduces a surprising relationship between rational functions,

matrices, and complex numbers. Given a matrix

(
a b
c d

)
, we can as-

sociate a rational function f(z) =
az + b

cz + d
on the complex numbers.

There are some stunning things here: if the matrix

(
a b
c d

)
is invert-

ible with inverse

(
e f
g h

)
, then the rational function f(z) =

az + b

cz + d

is invertible with inverse f−1(z) =
ez + f

gz + h
. This is not at all obvi-

ous, and is a bit surprising. If you recall the geometry of complex
numbers, and remember that multiplying has to do with a certain
rotation and scaling operation, then one can view the associated
rational functions to matrices as doing a certain rotation, scaling,
shifting, and then doing another roation, scaling, and shifting. The
work I do uses this sort of interplay extensively, and this hints at
two pervasive concepts of higher mathematics: we find connections
between different objects, ultimately learning more about everything
involved; and we let things ’act’ on other things (in this case, ma-
trices are ’acting’ on the complex plane) and through these actions,
we learn more about both what’s being acted upon and the actor.

2.4. Exponentials and Logs.

Exercise 2.24. Review the basic definitions and properties of exponentials
and logarithms. Also review the change-of-base formula.

Example 2.25. Our key interest with exponentials was with modeling cer-
tain types of growth. The easiest to remember is compounding interest.
If an initial payment of P is put into an account that grows as r percent
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interest that compounds n times a year, then after t years, there will be
P (1 + r

n)nt in the account. If the interest compounds continuously, there
will be Pert in the account.

Exercise 2.26. Find the amount of money in the accounts at the designated
time. It might be good if you try to estimate the results, to compare with
your intuition.

(1) Initial amount: 300, interest rate: 10%, compounded quarterly, time:
5 years

(2) Initial amount: 1000, interest rate: 5%, compounded monthly, time:
7 years

(3) Initial amount: 4000, interest rate: 4%, compounded bi-annually
(twice a year), time: 20 years

Exercise 2.27. Solve the following exponential equations:

(1) 2P0 = P0e
.07x (this is asking how long a continuously-compounded

interest account would take to double with 7% interest)
(2) 4P0 = P0e

.07x (does the answer to this make sense, considering the
above?)

(3) xex + ex = 0
(4) x lnx+ x = 0
(5) lnx+

√
x− 1 = 0 (This is much harder than the others. Hint: see if

you can find a solution, and then justify that it’s the only solution.
Bigger hint: show that this function is always increasing, and thus
is one-to-one)

Example 2.28. This example serves as a reminder of the various expo-
nential models that we have come across. In particular, we looked at five
different type of model.

(1) Exponential growth: a function of the form f(x) = aebx with b > 0.
It’s good to remember that exponential growth is larger than any
polynomial growth.

(2) Exponential decay: a function of the form f(x) = ae−bx with b < 0.

(3) Logistic growth: a function of the form f(x) =
a

1 + berx
, r 6= 0.

It’s good to remember that this describes population growth with
an upper and lower limit. The numerator, a, is called the ’carrying
capacity’ of the system.

(4) Logarithmic growth: a function of teh form f(x) = a + b lnx. It’s
good to remember that logarithmic growth is slower than any poly-
nomial growth.

Exercise 2.29. Let’s do an experiment. Suppose you are in college debt,
a situation which forces some to get a new loan every 6 months for 4 to
5 years. After some amount of time, you might have to pay back 9 or so
different loans, each with their own interest rates. Think to yourself about
the following: what’s the best way to pay it back? Choose the largest interest
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account and pay that one off? Distribute money across several accounts?
Pay off the interest on each, but focus on one or another? This exercise will
be a bit computation heavy, so I recommend that you pull out your calculator,
some paper, and keep great notes and a table. It is these notes/table that
I’ll want to see

(1) Let us suppose each of the 9 loans is for 4000 dollars, and they have
the following anual interest rates: 3%, 3.5%, 4%, 4.4%, 4.8%, 5%, 5.2%, 5.2%, 5.4%,
compounding continuosly (it will give a good approximation). Let
us also suppose that we have 500 dollars available per month to pay
into these loans, and we invest these at the end of the month, each
month.

(2) First, let’s see what happens if we use a dumb payback scheme: pay
off the smallest interest first, and then progress higher. The smallest
loan debt would grow like 4000e.03t. After one month, the debt on
this account would be 4000e.03(1/12). This is about $4010.01. We
then pay in $500, leaving $3510.01 in the account. The next month,
the debt in the account would grow to 3510.01e.03(1/12) (note that we
used 1/12 again, as this is the amount of time (in years) that passed
from this month to the next. This is about $3519.80. We again pay
in our $500, and we keep on going. We see that on the 9th month, we
won’t need all $500. So we use what we need, and then put the next
in the next-smallest account. How big is that account now? Looking
above, we see it had interest rate 3.5%. After 9 months, it will have
grown to size 4000e.035(9/12), or about 4091 dollars. Continue in this
fashion, paying off the different debts in this order. How long does
it take, and what is the total cost?

(3) Now, let’s use a better scheme. Pay off the largest interest rates
first. How long does it take, and what is the total cost?

(4) Now, I give you an option, Either come up with your own payback
method to try, or do the following computationally intense method -
each month, pay the interest on all accounts, and with the leftovers,
pay off the highest account. This isn’t actually much harder or
longer, once you realize that the interest payment on all but one
loan don’t change from month to month.

(5) Which of these is the best way to pay off one’s debt? Note that in
every case, there’s an interesting property: it’s hard to make progress
at first, as there is something like $100 in interest each month. But
as you pay more off, the interest rates fall, and it gets easier. This
intuition messes with a lot of people’s finances. This also leads to
the wisdom that large initial payments reduce overall pain by a lot.

(6) This is very similar to the financial situation one of my friends found
themselves in, except the numbers were not this clean. He got an
engineering position, but he worked as a waiter for 2 months as
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well to supplement his initial payments. Those 2 months ended up
reducing the length of his payment period by about 8 months.

It’s always scary when an exercise takes more than a page to write down,
hmm?

2.5. Trigonometric functions. It goes without saying that you should
know the unit circle, at least the sinx and cosx values. And you should
feel comfortable with both degrees and radians, and know how to convert
between them.

Exercise 2.30. Convert the following angles from degrees to radians:

(1) 20◦

(2) 45◦

(3) 110◦

(4) 75◦

Exercise 2.31. Convert the following angles in radians to angle measures
in degrees:

(1) π/12
(2) π/6
(3) 5π/7
(4) 12π/13

Example 2.32. We have two fundamental ways of thinking about the
elementary trig functions, sin θ, cos θ, tan θ, csc θ, sec θ, cot θ. On the one
hand, they describe the relationship between the adjacent, opposite, and
hypotenuse sides of a right triangle. On the other hand, sin θ describes the
y-coordinate of the point on the unit circle at an angle θ with the positive
x axis, and cos θ describes the x-coordinate. The other functions can all be
determined from the sine and cosine values.

Example 2.33. Determine the values of all 6 elementary trigonometric
functions from the given information:

(1) θ = π/6
(2) θ = −π/3
(3) sin θ = 1√

2
, cos θ < 0

(4) tan θ = 1, sin θ < 0
(5) cot θ = −

√
3, sin θ > 0

Example 2.34. Not covered here, but review the graphs of the six elemen-
tary trig functions, and their periods. One thing that I undercovered in class
was horizontal shifting of trig with modified periods. For example, suppose
we looked at g(x) = 3 sin(2x−π). The period is π, which is half the normal
period, due to the coefficient 2 in front of the x. The amplitude of this func-
tion is 3, as it’s the leading coefficient. How much is the function shifted by?
It is not shifted by π. Instead, note that this function is 3 sin(2(x− π/2)),
so that in fact we see that the function is shifted to the right by π/2 (in fact,
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if the function h(x) = 3 sin(2x), then we see easily that g(x) = h(x− π/2)).
The period change and the shift change might confuse answers. An easy
way to check is to use the most basic fact about sine: sin(0) = 0. Thus if
we think it’s shifted to the right by π/2, then we would expect g(π/2) = 0.
This is the case. Is g(π) = 0?

3. Analytic Trigonometry

We now transition away from the simple aspects of the elementary trigono-
metric functions, like what they look like and their basic manipulations. We
spend a whole 2 weeks on trig, equating to one week of ’elementary’ trig and
one week of ’analytic’ trig.

To review, we more or less covered the law of sines, the law of cosines,
completing triangles knowing 1 side length and any other 2 pieces of infor-
mation (from the other two side lengths or the three angles). We discovered
what combinations of side lengths/angles are or are not possible for triangles
to have, and we learned how to dea with possibly ambiguous descriptions of
triangles (e.g. if two side lengths and a non-included angle are known, two
resulting triangles may be possible).

From there, we learned the angle-sum and angle-difference formulas for
sine and cosine, and saw that these gave rise to a great host of other formulae.
Some worth mentioning might be the sum-to-product, product-to-sum, and
power reduction formulas. There is an incredible amount of power behind
these simple tools, and being able to tap into them is a big goal, and the
primary purposeof this section.

As a side-note, we came at this material through complex numbers. This
will serve as the reference write-up for the complex-number approach as
well.

3.1. Laws and Identities. Within this course, I will never expect you to
simple have everything memorized. You will always be permitted to have a
cheat-sheet when things like trig identities come up. In your study habits,
you shouldn’t focus on memorizing all the different formulae, but instead
focus on learning when to apply each one. Drawing pictures, triangles, and
the unit circles are probably good habits to get into here.

Example 3.1. The Law of Sines says that for any triangle ABC with sides

a, b, c, such that A is the angle opposite a, then
a

sinA
=

b

sinB
=

c

sinC
.

This is one of the trig laws that is easy to prove is you forget it (recall from
class, on a triangle, you drop an altitude, and compute its length in two
different ways by using that sin(θ) = o

h and set them equal). The Law of

Cosines is harder to remember. It says that a2 = b2 + c2 − 2bc cosA. (To
remember how we proved it - we used the distance formula and the Law of
Sines, and it just sort of popped out).

Example 3.2. The primary purpose of these laws is to complete triangles
when we know only a little about them. It turns out that if we know any
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side length and any other 2 bits of information, we can classify the triangle.
However, not every combination of sides and angles are possible. For exam-
ple, there is no triangle for which a = 10, b = 20, A = 85◦. Draw what this
triangle would need to look like, and you can see why. Algebraically, if we
try to solve for sinB with the Law of Sines, it explodes. Similarly, there is
no triangle with side lengths a = 1, b = 2, c = 4. Trying to draw one would
make this very obvious again.

Example 3.3. On the other hand, it’s possible for there to be two triangles
that both have the same SSA. For example, there are two triangles with
a = 12, b = 31, A = 20◦. Draw a picture, and the key bit here is to remember
that there is an acute and an obtuse triangle that fits. The trickiest part
about this type of triangle is that if you naively compute it using your
calculator, you’ll only get one of the two triangles. This is because you
will want to use the Law of Sines at one point, and you’ll have to find the
inverse sine of some angle - suppose you were finding arcsin 0.9047, ad your
calculator would spit out 64.8◦, but 180◦ − 64.8◦ = 115.2◦ is another angle
whose sine is 0.9047. Why is this? It has to do with our convention on
arcsin(x), making it so that it’s single-valued. So it’s important to draw a
picture and think about what you’re doing.

Exercise 3.4. Solve the following triangles:

(1) A = 36◦, a = 8, b = 5
(2) A = 110◦, a = 125, b = 100
(3) A = 58◦, a = 15, b = 17
(4) a = 6, b = 8, c = 12
(5) A = 50◦, b = 15, c = 30
(6) C = 15◦, a = 6.25, b = 2

Example 3.5. The area of a triangle is given by 1
2bh. In class, we came up

with a method of finding the area of any triangle using the Law of Sines and
the Law of Cosines. But the fact is that it’s not so hard - on any triangle,
drop an altitude so that we have a right triangle with known angle and
hypotenuse. Then use sin θ = o

h to find the length of the altitude. This is

the rationale that we used to show that Area = 1
2bc sinA, for example.

Exercise 3.6. For each of the triangles in exercise 3.4 above, find their area.

Exercise 3.7. There are some other identities that we should know. Justify
why the following are true:

(1) sin2 x+ cos2 x = 1
(2) 1 + cot2 x = csc2 x
(3) tan2 x+ 1 = sec2 x

The sine and cosine angle-sum and angle-difference formulas are very
important, and will provide our primary tools for simplifying or verifying
trigonometric expressions.
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Example 3.8. The sine angle-sum formula says that sinα+ β = sinα cosβ+
cosα sinβ, and the cosine angle-sum formula says that cos(α+β) = cosα cosβ−
sinα sinβ. From these, we can remember all the others if we have enough
time. To get the angle-difference formula, we must remember that sin(−x) =
− sin(x), i.e. that sine is an odd function, and that cos(−x) = cos(x), i.e.
that cosine is an even function. For then sin(x − y) = sin(x + (−y)) =
sinx cos(−y)+sin(−y) cosx = sinx cos y−sin y cosx. Similarly, cos(x−y) =
cosx cos y + sinx sin y.

Example 3.9. One of the most fundamental things we can use angle-sum
and difference formulae for is to evaluate the exact values of some angles that
we don’t already know. We know the values for all multiples of 30◦ and 45◦.
What if we wanted the exact value of 75◦? We can note that 75◦ = 30◦+45◦,
so that cos 75◦ = cos(45◦ + 30◦) = cos(45◦) cos(30◦)− sin(45◦) sin(30◦). We
know the exact values for all of these values, so we can simply multiply them

out to get that cos(75◦) =

√
6−
√

2

4
.

Exercise 3.10. Find the exact values of the following:

(1) cos(115◦)
(2) sin(135◦)
(3) tan(225◦)
(4) sin(15◦)
(5) sin 105◦) remember what you’ve already calculated

Example 3.11. This example describes a type of problem that will abso-
lutely come up in calculus, in something called trig substitution.
Suppose we wanted to write cos(arctan 1 + arccosx) algebraically, know-
ing that 0 ≤ x ≤ 90◦. Then we can note that cos(arctan 1 + arccosx) =
cos(arctan 1) cos(arccosx)−sin(arctan 1) sin(arccosx). We know that arctan(1) =
45◦, so that sin(arctan(1)) = cos(arctan(1)) = 1√

2
. How do we evaluate the

other two terms? We know that cos(arccosx) = x for x in [0, 90◦] (but not all
x - do you remember why? ). To know sin(arccosx), we need to find a triangle
that has an arccosx angle. So we choose the right triangle with hypotenuse
length 1 and adjacent side-length x. Then the enclosed angle is arccosx.
What’s the remaining side-length? It’s

√
12 − x2 by the Pythagorean The-

orem. Now it’s easy to see that sin arccosx =
√

1− x2. Putting this all

together, we see that cos(arctan 1 + arccosx) =
x−
√

1− x2√
2

.

Exercise 3.12. Write the following algebraically:

(1) sin(arccos 1
2 + arccosx)

(2) cos(arctan
√

3 + arcsinx2)
(3) sin(arccos 3

5 − arcsin 5
13) (This doesn’t require a calculator - and you

might even give a cleaner answer than your calculator)
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Exercise 3.13. Solve the following for x in [0, 2π) (The theme here is that
if you can simplify trig expressions so that the angles aren’t shifted, then
perhaps you should do it):

(1) sin(x+ π/3) + sin(x− π/3) = 1
(2) 2 sin(x+ π/2) + 3 tan(π − x) = 0

Let’s guide you through some verifications of other trigonometric identi-
ties using the few that we know so far.

Exercise 3.14. Let’s prove the double-angle formulae: sin(2u) = 2 sinu cosu
and cos(2u) = cos2 u− sin2 u.

(1) Interpret sin(2u) as sin(u+ u) and use angle-sum.
(2) Do the same for cos(2u).
(3) Let’s write cos(2u) as 2 cos2 u− 1. Do you see how to do that?
(4) Now let’s write cos(2u) as 1− 2 sin2 u.

Exercise 3.15. Show the power-reduction formulae: cos2 u =
1 + cos 2u

2

and sin2 u =
1− cos 2u

2
. (Hint: use the last exercise).

Example 3.16. We can use the double-angle formulas for larger angles,
too. If we wanted to come up with the sine triple-angle formula, we might
note that sin 3x = sin(x + 2x) = sinx cos 2x + sin 2x cosx = sinx(cos2 x −
sin2 x) + (2 sinx cosx) cosx = 3 sinx cos2 x− sin3 x.

Exercise 3.17. Find the cosine triple-angle formula and quadruple-angle
formula. (Hint: I’d recommend breaking up 4x as 2x+ 2x).

Exercise 3.18. Let’s put these skills to some use. Given that cos θ = 5/13,
0 < θ < π/2, find sin 2θ, cos 2θ, tan 2θ.

Exercise 3.19. Let’s derive the half-angle formulas sin
x

2
= ±

√
1− cosx

2

and cos
x

2
= ±

√
1 + cosx

2
.

(1) Start with the power-reduction formulae from exercise 3.15 above.
(2) Write the variable x = 2u, and write the power-reduction formulae

in terms of x instead of u.
(3) Solve for the squared trig term in the power-reduction formulae.

This should give you the result.

Exercise 3.20. Now we deviate from the process of using our last set of
identities to come up with a new set. Verify some of the product-to-sum
formulas.

(1) Show that 2 sinu sin v = cos(u− v)− cos(u+ v)
(2) Show that 2 cosu cos v = cos(u− v) + cos(u+ v)
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3.2. Putting all the analytic trig together. For this section, I highly
recommend you either work with the book’s page open to the trig identities,
or after having written a trig cheat sheet (like the one you’ll be allowed to
use on the final, for example).

Exercise 3.21. Subtract and simplify:
sin θ − 1

cos θ
− cos θ

sin θ − 1

Exercise 3.22. Verify the identities

(1) cot2 α(sec2 α− 1) = 1
(2) sin2 x cos2 x = 1

8(1− cos 4x)

(3)
2 cos 3x

sin 4x− sin 2x
= cscx

Exercise 3.23. Solve the following for x in [0, 2π):

(1) 3 tanx− cotx = 0
(2) cos2 x+ cosx = 0
(3) sin 2x− cosx = 0

4. Complex Numbers and Vectors

We review the basic manipulation of complex numbers and their interac-
tion. Understanding 2D vectors and complex numbers are very similar, so
we reconsider them together.

4.1. Basics of Complex Numbers. In many ways, the complex numbers
behave just as we suspect. Any complex number z can be written uniquely
as a + bi, where a, b are both real numbers, and i =

√
−1. If z1, z2, z3 are

three complex numbers, then we know that

• z1z2 = z2z1 (commutativity)
• (z1z2)z3 = z1(z2z3) (associativity)

For a complex number z = a + bi, we call a the ’real part’ and b the
’imaginary part.’ If z1 = a + bi, z2 = c + di, then z1z2 = (a + bi)(c + di) =
(ac− bd) + (ad+ bc)i.

To each complex number z = a+ bi, we can associate the 2D real vector
(a, b). This means that the more we know about 2D real vectors, the more
we know about complex numbers, and vice versa. Recall that to a 2D real

vector ~u = (x, y), we denote by |~u| the magnitude of ~u (which is
√
x2 + y2,

from the Pythagorean Formula), and an angle θ that the vector makes with
the positive x axis (thus θ = arctan y/x). Similarly, for a complex number

z = a + bi, we have |z| =
√
a2 + b2 and arg(z) = θ (we call the complex

angle the argument).

Exercise 4.1. Perform the following manipulations with complex numbers,
writing the answer if the form a+ bi):

(1) Compute (3 + 4i)(5 + 6i)(1/2 + (3/4)i)
(2) Compute (1 + i)3

(3) If z = 8 + 11i, what is |z|? What is arg(z)?
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Note that in this last exercise, you would do the same work to find the
length and angle of the vector (8, 11). In this sense, these are just two sides
of the same coin. More basic exercises on complex numbers can be found in
the first set of exercises I put up, after the first week. But we won’t focus on
complex numbers here. Our main purpose is to remember the idea of our
proof of the angle-sum formulae.

4.2. Complex proof of angle-sum. Recall that we can write any 2D real
vector ~u as |u|(cos θ, sin θ), where θ is the angle that the vector makes with
the positive x axis. Similarly, any complex number z can be written as
|z|(cos θ + i sin θ), where θ is the argument of z.

The only result for which we gave no justification throughout this course
was the following:

Theorem 4.1. Euler’s Theorem: The following stunning theorem is true,
relating the magnitude and angle of a complex number, the exponential, and
trig functions:

eiθ = cos θ + i sin θ (4.1)

Example 4.2. This means that we know that ei(2π/3) = cos(2π/3)+i sin(2π/3) =
−1/2 + i

√
32, for example.

Lemma 4.2. Theorem 4.1 lets us do some very slick things. One case is
that

(cos θ + i sin θ)n = e(iθ)n = ei(θn) = cos(nθ) + i sin(nθ) (4.2)

This is a trigonometric statement that we proved with the geometry of
complex numbers. Cool.

Example 4.3. This also lets us perform some otherwise hard computations
very easily. Since every complex number can be written as r cos θ + i sin θ,
where I use a standard polar notation r = |z| (recall polar coordinates), then
we also have that every complex number can be written as reiθ. Suppose we
wanted to calculate (1 + i)17. We could do this by hand, but that’s painful.

Instead, note that 1+i =
√

2(cos π2 +i sin pi
2 ) (you should be able to do that -

can you?), so that 1+i =
√

2eiπ/2. Thus (1+i)17 =
√

2
1
7ei17π/2 =

√
2
1
7eiπ/2

(it’s periodic with period 2π, so we can cancel out multiples of 2π), which

is
√

2
1
7( 1√

2
+ i 1√

2
) =
√

2
1
6(1 + i) = 256 + 256i. Whoa.

Now we proceed to our main proofs. I present these because it’s how most
people I know remember the angle-sum identities.

Lemma 4.3. Proof of Angle-Sum Formulae:

sin(x+ y) = sinx cos y + sin y cosx (4.3)

cos(x+ y) = cosx cos y − sinx sin y (4.4)

Proof: Consider the complex numbers z1 = cosx+ i sin y = eix and z2 =
cos y + i sin y = eiy. Multiply them together. On the one hand, (cosx +
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i sinx)(cos y+ i sin y) = (cosx cos y− sinx sin y) + i(cosx sin y+ sinx cos y).

On the other hand, eixeiy = ei(x+y) = cos(x+ y) + i sin(x+ y).
Two complex numbers are the same if and only if they have the same

real and complex values. Thus, since we have (cosx cos y − sinx sin y) +
i(cosx sin y+sinx cos y) = cos(x+y)+i sin(x+y), we must have that cos(x+
y) = (cosx cos y−sinx sin y) and sin(x+y) = cosx sin y+sinx cos y, proving
our two formulae. And think about it - this is pretty easy to remember, as
long as we remember that eiθ = cos θ + i sin θ. ♦

4.3. Vector Arithmetic. We also developed 2D vector arithmetic. One
important skill we developed was the ability to write any vector in the form
(r cos θ, r sin θ), which we later converted to polar form (r, θ).

Example 4.4. Suppose we wanted to write the vector (1,
√

3) in trigonometric-

vector form (r cos θ, r sin theta). Then we compute the length to be

√
12 +

√
3
2

=√
4 = 2, and the angle to be arctan

√
3 = π/3. Thus (1,

√
3) = (2 cosπ/3, 2 sinπ/3),

and a quick computation shows this is correct. Thus if we were to write
(1,
√

3) in polar coordinates, its polar coordinates would be (2, π/3).

Exercise 4.5. Write the following vectors in trigonometric-vector form and
in polar coordinates:

(1) (5, 5)
(2) (3, 4)
(3) (7, 11)

We also learned dot products. We learned a lot of material with respect to
dot products, and this will be used a lot in physics (though not AP Calculus
BC, due to its course design). Do you remember what a dot product is?

Exercise 4.6. Compute the following dot products:

(1) (1, 3) · (2, 4)
(2) (2, 3) · (−3, 2) (What does this result mean about the two vectors?)
(3) (4, 4) · (1,−1/2)

Recall that we also used dot products to project vectors onto other vectors.
This will come up the next time you learn about vectors, in particular when
you learn a topic called ”Linear Algebra.” In this course (and in your first
physics course), you can actually get by using only triangles and properties
of sine, cosine, and tangent. To that end, there will be no dot product
projections on the final exam, nor (unless I’m very mistaken) on a placement
exam into calculus.

5. Conics

I feel this is recent enough that I don’t need to go through examples to
review. What should you know? You should know the standard forms of
the four conics, how to draw them, and remember the general form of a
conic. This is in line with a big motif of this course: any time you see a
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quadratic, you should feel absolutely confident in your ability to solve it and
understand it.

Also - what is the key to putting conics in standard form? Ans: completing
the square. So we do 2 circles, 2 ellipses, 2 parabolas, and 2 hyperbolas.

Exercise 5.1. Put the following conics in standard form, state what conic
they are, and graph them.

(1) x2 − 6x+ y2 + y − 90.75 = 0
(2) 9x2 − 32x− 9y2 + 36y − 8 = 0
(3) y2 − 2y − 8x = 7
(4) 4x2 + 3y2 − 8x+ 6y − 5 = 0
(5) x2 + y2 + 6y + 8 = 17
(6) 16x2 + 16x+ 4y2 − 4y = 59
(7) x2 + 13 = 4y − 6x
(8) 2y2 − x2 − 4y = 2

You will be allowed a ’cheat sheet’ for the final exam. On this sheet, you
may put anything that you’d like. I don’t expect you to have the various
bits about the conics memorized, like how to find the focus of a parabola
from its formula. But since you can have a cheet sheet, I would feel no guilt
if I asked you to do such a thing on the final. So be able to do it with a
sheet, even if you can’t do it from memory.

This, I think, is a perfectly valid skill. We focus so often on memorization,
when it’s really the ability to quickly synthesize different sources and infor-
mation that matters. This does mean quickly, however, so you must have
some familiarity with the skill. Like all other tests so far, the final will test
your speed and familiarity with the material as well as your understanding.

6. Sequences and series

We haven’t finished this yet. Coming Tuesday afternoon.

7. Limits and an Introduction to Calculus

We haven’t finished this yet either. Coming Tuesday/Wednesday after-
noon.
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