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We want to understand the integral

(1)
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.

Although fattybake mentions the residue theorem, we won’t use that at all. Instead, we will
be very clever.

We will do a technique that was once very common (up until the 1910s or so), but is much

less common now: let’s multiply by Γ(n) =
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where I interchanged the order of integration because everything converges really really nicely.
Do a change of variables, sending u 7→ u(1 + t2). Notice that my nicely behaving measure
du/u completely ignores this change of variables, which is why I write my Γ function that
way. Also be pleased that we are squaring t, so that this is positive and doesn’t mess with
where we are integrating. This leads us to
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where I change the order of integration again. Now we have an inner t integral that we can
do, as it’s just the standard Gaussian integral (google this if this doesn’t make sense to you).
The inner integral is ∫ ∞

−∞
e−ut

2
dt =

√
π/u.

Putting this into the above yields
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which is exactly the definition for Γ(n− 1
2) ·
√
π.

But remember, we multiplied everything by Γ(n) to start with. So we divide by that to get
the result:
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