

RESPONSE TO FATTYBAKE
ANSWERED BY MIXEDMATH

SHAMELESS PLUG: MIXEDMATH.WORDPRESS.COM, DAVIDLOWRYDUDA.COM

We want to understand the integral

$$(1) \quad \int_{-\infty}^{\infty} \frac{dt}{(1+t^2)^n}.$$

Although fattybake mentions the residue theorem, we won't use that at all. Instead, we will be very clever.

We will do a technique that was once very common (up until the 1910s or so), but is much less common now: let's multiply by $\Gamma(n) = \int_0^\infty u^n e^{-u} \frac{du}{u}$. This yields

$$(2) \quad \int_0^\infty \int_{-\infty}^\infty \left(\frac{u}{1+t^2} \right)^n e^{-u} dt \frac{du}{u} = \int_{-\infty}^\infty \int_0^\infty \left(\frac{u}{1+t^2} \right)^n e^{-u} \frac{du}{u} dt,$$

where I interchanged the order of integration because everything converges really really nicely. Do a change of variables, sending $u \mapsto u(1+t^2)$. Notice that my nicely behaving measure du/u completely ignores this change of variables, which is why I write my Γ function that way. Also be pleased that we are squaring t , so that this is positive and doesn't mess with where we are integrating. This leads us to

$$(3) \quad \int_{-\infty}^\infty \int_0^\infty u^n e^{-u+ut^2} \frac{du}{u} dt = \int_0^\infty \int_{-\infty}^\infty u^n e^{-u+ut^2} dt \frac{du}{u},$$

where I change the order of integration again. Now we have an inner t integral that we can do, as it's just the standard Gaussian integral (google this if this doesn't make sense to you). The inner integral is

$$\int_{-\infty}^\infty e^{-ut^2} dt = \sqrt{\pi/u}.$$

Putting this into the above yields

$$(4) \quad \sqrt{\pi} \int_0^\infty u^{n-1/2} e^{-u} \frac{du}{u},$$

which is exactly the definition for $\Gamma(n - \frac{1}{2}) \cdot \sqrt{\pi}$.

But remember, we multiplied everything by $\Gamma(n)$ to start with. So we divide by that to get the result:

$$(5) \quad \int_{-\infty}^\infty \frac{dt}{(1+t^2)^n} = \frac{\sqrt{\pi} \Gamma(n - \frac{1}{2})}{\Gamma(n)}$$