
SMOOTHED SUMS TO SHARP SUMS

DAVID LOWRY-DUDA

In this note, I describe a combination of two smoothed integral transforms
that has been very useful in my collaborations with Alex Walker, Chan Ieong
Kuan, and Tom Hulse. I suspect that this particular technique was once very
well-known. But we were not familiar with it, and so I describe it here.

In application, this is somewhat more complicated. But to show the
technique, I apply it to reprove some classic bounds on GL(2) L-functions.

1. Introduction

Consider a Dirichlet series

D(s) =
∑
n≥1

a(n)

ns
.

Suppose that this Dirichlet series converges absolutely for Re s > 1, has
meromorphic continuation to the complex plane, and satisfies a functional
equation of shape

Λ(s) := G(s)D(s) = εΛ(1− s),
where |ε| = 1 and G(s) is a product of Gamma factors.

Dirichlet series are often used as a tool to study number theoretic func-
tions with multiplicative properties. By studying the analytic properties of
the Dirichlet series, one hopes to extract information about the coefficients
a(n). Some of the most common interesting information within Dirichlet
series comes from partial sums

S(n) =
∑
m≤n

a(m).

For example, the Gauss Circle and Dirichlet Divisor problems can both be
stated as problems concerning sums of coefficients of Dirichlet series.

One can try to understand the partial sum directly by understanding the
integral transform

S(n) =
1

2πi

∫
(2)
D(s)

Xs

s
ds,

a Perron integral. However, it is often challenging to understand this inte-
gral, as delicate properties concerning the convergence of the integral often
come into play.

This material is based upon work supported by the National Science Foundation Grad-
uate Research Fellowship Program under Grant No. DGE 0228243.
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Instead, one often tries to understand a smoothed sum of the form∑
m≥1

a(m)v(m)

where v(m) is a smooth function that vanishes or decays extremely quickly
for values ofm larger than n. A large class of smoothed sums can be obtained
by starting with a very nicely behaved weight function v(m) and take its
Mellin transform

V (s) =

∫ ∞
0

v(x)xs
dx

x
.

Then Mellin inversion gives that∑
m≥1

a(m)v(m/X) =
1

2πi

∫
(2)
D(s)XsV (s)ds,

as long as v and V are nice enough functions.
In this note, we will use two smoothing integral transforms and corre-

sponding smoothed sums. We will use one smooth function v1 (which de-
pends on another parameter Y ) with the property that∑

m≥1
a(m)v1(m/X) ≈

∑
|m−X|<X/Y

a(m).

And we will use another smooth function v2 (which also depends on Y ) with
the property that∑

m≥1
a(m)v2(m/X) =

∑
m≤X

a(m) +
∑

X<m<X+X/Y

a(m)v2(m/X).

Further, as long as the coefficients a(m) are nonnegative, it will be true that∑
X<m<X+X/Y

a(m)v2(m/X)�
∑

|m−X|<X/Y

a(m),

which is exactly what
∑
a(m)v1(m/X) estimates. Therefore∑

m≤X
a(m) =

∑
m≥1

a(m)v2(m/X) +O
(∑
m≥1

a(m)v1(m/X)
)
. (1.1)

Hence sufficient understanding of
∑
a(m)v1(m/X) and

∑
a(m)v2(m/X)

allows one to understand the sharp sum∑
m≤X

a(m).

2. Two Smooth Cutoff Functions

Let us now introduce the two cutoff functions that we will use.



SMOOTHED SUMS TO SHARP SUMS 3

2.1. Concentrating Integral. We use the Mellin transform

1

2πi

∫
(2)

exp
(πs2
Y 2

)Xs

Y
ds =

1

2π
exp

(
− Y 2 log2X

4π

)
.

Then

1

2πi

∫
(2)
D(s) exp

(πs2
Y 2

)Xs

Y
ds =

1

2π

∑
n≥1

a(n) exp
(
− Y 2 log2(X/n)

4π

)
.

For n ∈ [X −X/Y,X +X/Y ], the exponential damping term is essentially
constant. However for n with |n − X| > X/Y , this quickly exponential
decay. Therefore this integral is very nearly the sum over those n with
|n−X| < X/Y .

For this reason we sometimes call this transform a concetrating integral
transform. All of the mass of the integral is concentrated in a small interval
of width X/Y around the point X.

Note that if a(n) is nonnegative, then we have the trivial bound∑
|n−X|<X/Y

a(n)�
∑
n≥1

a(n) exp
(
− Y 2 log2(X/n)

4π

)
.

As this is a bit less known, we include a brief proof of this transform.

Proof. Write Xs = es logX and complete the square in the exponents. Since
the integrand is entire and the integral is absolutely convergent, we may
perform a change of variables s 7→ s − Y 2 logX/2π and shift the line of
integration back to the imaginary axis. This yields

1

2πi
exp

(
−Y

2 log2X

4π

)∫
(0)
eπs

2/Y 2 ds

Y
.

The change of variables s 7→ isY transforms the integral into the standard
Gaussian, completing the proof. �

2.2. Bump and Decay Integral. For X,Y > 0, let vY (X) denote a
smooth non-negative function with maximum value 1 satisfying

(1) vY (X) = 1 for X ≤ 1,
(2) vY (X) = 0 for X ≥ 1 + 1

Y .

Let V (s) denote the Mellin transform of vY (X), given by

V (s) =

∫ ∞
0

tsvY (t)
dt

t
.

when Re(s) > 0. Through repeated applications of integration by parts, one
can show that V (s) satisfies the following properties:

(1) V (s) = 1
s +Os(

1
Y ).

(2) V (s) = −1
s

∫ 1+ 1
Y

1 v′(t)tsdt.
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(3) For all positive integersm, and with s constrained to within a vertical
strip where |s| > ε, we have

V (s)�ε
1

Y

(
Y

1 + |s|

)m
. (2.1)

Property (3) above can be extended to real m > 1 through the Phragmén-
Lindelöf principle.

Then we have that

1

2πi

∫
(2)
D(s)V (s)Xsds =

∑
n≤X

a(n) +
∑

X<n<X+X/Y

a(n)vY (n/X).

In other words, the sharp sum
∑

n≤X a(n) is captured perfectly, and then

there is an amount of smooth fuzz for an additional X/Y terms. As long as
the short sum of length X/Y isn’t as large as the sum over the first X terms,
then this transform gives a good way of understanding the sharp sum.

When a(n) is nonnegative, we have the trivial bound that∑
X<n<X+X/Y

a(n)vY (n/X)�
∑

|n−X|<X/Y

a(n).

2.3. In Combination. We have the equality∑
n≥1

a(n)vY (n/X) =
∑
n≤X

a(n) +
∑

X<n<X+X/Y

a(n)vY (n/X)

=
∑
n≤X

a(n) +O
( ∑
|n−X|<X/Y

a(n)
)

=
∑
n≤X

a(n) +O

(∑
n≥1

a(n) exp
(
− Y 2 log2(X/n)

4π

))
.

Rearranging, we have∑
n≤X

a(n) =
∑
n≥1

a(n)vY (n/X) +O

(∑
n≥1

a(n) exp
(
− Y 2 log2(X/n)

4π

))
.

In terms of integral transforms, we then have that∑
n≤X

a(n) =
1

2πi

∫
(2)
D(s)V (s)Xsds

+O

(
1

2πi

∫
(2)
D(s) exp

(πs2
Y 2

)Xs

Y
ds

)
.

Fortunately, the process of understanding these two integral transforms
often boils down to the same fundamental task: determine how quickly
Dirichlet series grow in vertical strips.
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3. Application: Sums of Coefficients of GL(2) Cusp Forms

Suppose that f(z) =
∑

n≥1 a(n)e(nz) is a GL(2) holomorphic cusp form
of weight k. We do not restrict k to be an integer, and in fact k might be
any rational number as long as k > 2. Then the Rankin-Selberg convolution

L(s, f ⊗ f) = ζ(2s)
∑
n≥1

|a(n)|2

ns+k−1

is an L-function satisfying a functional equation of shape

Λ(s, f ⊗ f) := (2π)−2sL(s, f ⊗ f)Γ(s)Γ(s+ k − 1) = εΛ(s, f ⊗ f),

where |ε| = 1 (and in fact the right hand side L-function may actually

correspond to a related pair of forms f̃ ⊗ f̃ , though this does not affect the
computations done here).

It is a classically interesting question to consider the sizes of the coef-
ficients a(n). The Ramanujan-Petersson conjecture states that a(n) �
n

k−1
2

+ε. The Ramanujan-Petersson conjecture is known for full-integral
forms on GL(2), but this is a very deep and very technical result. In general,
this type of question is very deep, and very hard.

Using nothing more than the functional equation and the pair of integral
transforms, let us analyze the sizes of∑

n≤X

|a(n)|2

nk−1
.

Note that the power nk−1 serves to normalize the sum to be 1 on average
(at least conjecturally).

As described above, it is now apparent that∑
n≤X

|a(n)|2

nk−1
=

1

2πi

∫
(2)

L(s, f ⊗ f)

ζ(2s)
V (s)Xsds

+O

(
1

2πi

∫
(2)

L(s, f ⊗ f)

ζ(2s)
exp

(πs2
Y 2

)Xs

Y
ds

)
.

We now seek to understand the two integral transforms. Due to the
ζ(2s)−1 in the denominator, and due to the mysterious nature of the zeroes
of the zeta function, it will only be possible to shift each line of integration
to Re s = 1

2 . Note that L(s, f ⊗ f) has a simple pole at s = 1 with a residue
that I denote by R.

By the Phragmén-Lindelöf Convexity principle, it is known from the func-
tional equation that

L(
1

2
+ it, f ⊗ f)� (1 + |t|)3/4.
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Then we have by Cauchy’s Theorem that

1

2πi

∫
(2)

L(s, f ⊗ f)

ζ(2s)
exp

(πs2
Y 2

)Xs

Y
ds

=
RXe1/Y

2

Y ζ(2)
+

1

2πi

∫
(1/2)

L(s, f ⊗ f)

ζ(2s)
exp

(πs2
Y 2

)Xs

Y
ds.

The shifted integral can be written∫ ∞
−∞

L(12 + it, f ⊗ f)

ζ(1 + 2it)
exp

(π(14 − t
2 + it)

Y 2

)X 1
2
+it

Y
dt. (3.1)

It is known that
ζ(1 + 2it)−1 � log(1 + |t|).

Therefore, bounding by absolute values shows that (3.1) is bounded by∫ ∞
−∞

(1 + |t|)
3
4
+εe−t

2/Y 2X
1
2

Y
dt.

Heuristically, the exponential decay causes this to be an integral over
t ∈ [−Y, Y ], as outside this interval there is exponential decay. We can
recognize this more formally by performing the change of variables t 7→ tY .
Then we have ∫ ∞

−∞
(1 + |tY |)

3
4
+εe−t

2
X

1
2dt� X

1
2Y

3
4
+ε.

In total, this means that

1

2πi

∫
(2)

L(s, f ⊗ f)

ζ(2s)
exp

(πs2
Y 2

)Xs

Y
ds =

RXe1/Y
2

Y ζ(2)
+O(X

1
2Y

3
4
+ε).

Working now with the other integral transform, Cauchy’s theorem gives

1

2πi

∫
(2)

L(s, f ⊗ f)

ζ(2s)
V (s)Xsds

=
RXV (1)

ζ(2)
+

1

2πi

∫
(1/2)

L(s, f ⊗ f)

ζ(2s)
V (s)Xsds.

The shifted integral can again be written∫ ∞
−∞

L(12 + it, f ⊗ f)

ζ(1 + 2it)
V (12 + it)X

1
2
+itdt, (3.2)

and, bounding (3.2) by absolute values as above, we get∫ ∞
−∞

(1 + |t|)
3
4
+ε|V (12 + it)|X

1
2dt�

∫ ∞
−∞

(1 + |t|)
3
4
+ε 1

Y

(
Y

1 + |t|

)m
X

1
2dt

for any m ≥ 0. In order to make the integral converge, we choose m = 7
4 +2ε,

which shows that∫ ∞
−∞

(1 + |t|)
3
4
+ε|V (12 + it)|X

1
2dt� X

1
2Y

3
4
+ε.
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Therefore, we have in total that

1

2πi

∫
(2)

L(s, f ⊗ f)

ζ(2s)
V (s)Xsds =

RXV (1)

ζ(2)
+O(X

1
2Y

3
4
+ε).

Remark 3.1. Notice that the X and Y bounds are the exact same for the
two separate integral bounds, and that the bounding process was essentially
identical. Heuristically, this should generally be true (although in practice
there may be some advantage to one over the other).

Now that we have estimated these two integrals, we can say that∑
n≤X

|a(n)|2

nk−1
= cX +O

(X
Y

)
+O(X

1
2Y

3
4
+ε)

for some computable constant c. This is optimized when

X
1
2 = Y

7
4
+ε =⇒ Y ≈ X

2
7 ,

leading to ∑
n≤X

|a(n)|2

nk−1
= cX +O(X

5
7
+ε).

This isn’t the best possible or best-known result, but it came for almost
free! (So one can’t complain too much). Smooth cutoffs and understood
polynomial growth allow sharp cutoffs with polynomial-savings error term.

4. In the next note

In a forthcoming note, we will revisit this example and be slighly more
clever in our application of this technique of comparing two smooth integral
transforms together. We will discuss an improved (almost still free) result,
and some of the limitations of the technique.
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