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Abstract of “On Some Variants of the Gauss Circle Problem” by David Lowry-Duda,
Ph.D., Brown University, May 2017

The Gauss Circle Problem concerns finding asymptotics for the number of lattice
point lying inside a circle in terms of the radius of the circle. The heuristic that the
number of points is very nearly the area of the circle is surprisingly accurate. This
seemingly simple problem has prompted new ideas in many areas of number theory
and mathematics, and it is now recognized as one instance of a general phenomenon.
In this work, we describe two variants of the Gauss Circle problem that exhibit
similar characteristics.

The first variant concerns sums of Fourier coefficients of GL(2) cusp forms. These
sums behave very similarly to the error term in the Gauss Circle problem. Normalized
correctly, it is conjectured that the two satisfy essentially the same asymptotics.

We introduce new Dirichlet series with coefficients that are squares of partial
sums of Fourier coefficients of cusp forms. We study the meromorphic properties
of these Dirichlet series and use these series to give new perspectives on the mean
square of the size of sums of these Fourier coefficients. These results are compatible
with current conjectures.

The second variant concerns the number of lattice points of bounded size on one-
sheeted hyperboloids. This problem is very similar to counting the number of lattice
points within a spheres of various dimensions, except with the additional constraint
of lying on a hyperboloid. It turns out that this problem is equivalent to estimating
sums of the shape > r4(n? + h), where ry(m) is the number of representations of
m as a sum of d squares. We prove improved smoothed and sharp estimates of the
second moment of these sums, yielding improved estimates of the number of lattice
points.

In both variants, the problems are related to modular forms and, in particular,
to shifted convolution sums associated to these modular forms. We introduce new
techniques and new Dirichlet series which are quite general. At the end of this work,
we describe further extensions and questions for further investigation.
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CHAPTER ONE

Introduction



Charles Darwin had a theory that once in a while one should
perform a damn-fool experiment. It almost always fails, but
when it does come off is terrific.

Darwin played the trombone to his tulips. The result of this
particular experiment was negative.

Littlewood, A Mathematician’s Miscellany

In this thesis, we study and introduce new methods to study problems that
are closely related to the Gauss Circle problem. In this introductory chapter, we
motivate and explain the Gauss Circle problem and how it relates to the other
problems described in later chapters. In Section 1.1, we give a historical overview of
the classical Gauss Circle and Dirichlet Hyperbola problems.

1.1 Gauss Circle Problem

The Gauss Circle problem is the following seemingly innocent question:

How many integer lattice points lie inside or on the circle of radius v/ R
centered at the origin? That is, how many points (z,y) € Z? satisfy
22 +y? < R?

We will use S3(R) to denote the number of lattice points inside or on the circle
of radius v/R centered at the origin. Intuitively, it is clear that Sy(R) should be
approximately the area of the circle, Vol B (\/ﬁ) = mR. This can be made rigorous
by thinking of each lattice point as being the center of a 1 x 1 square in the plane
and counting those squares fully contained within the circle and those squares lying
on the boundary of the circle. Using this line of thought, Gauss proved (in 1798)
that
1S2(R) — Vol B(VR)| < VR,

so that the lattice point discrepancy between the number of lattice points within the
circle and the area of the circle is bounded by some constant times the circumference.

It may appear intuitive that this is the best one could hope for." No further
progress was made towards Gauss Circle problem until 1906, when Sierpinski [Sie06]

tIndeed, I am not currently aware of an intuitive heuristic that explains why the actual error
term is so much better.



showed that )
155(R) — Vol B(WVR)| < R3,

a significant improvement over the bound from Gauss. This is already remarkable
— somehow lattice points in the plane are distributed in the plane in a way that a
growing circle includes and omits points in a way that partially offsets each other.

It is natural to ask: What is the correct exponent of growth on the error term?
Hardy, Littlewood, and Cramér [Cra22] proved that, on average, the correct exponent
is }l when they proved

/0X|52(r> — Vol B(v/7)]?dr = cX? + O(X 1) (1.1)

for some constant c¢. At approximately the same time, Hardy [Har17] showed that
[S2(R) — Vol B(VR)| = Q(Rx),

so that i is both a lower bound and the average bound.

At the same time (and often, even within the same works, such as in Hardy’s
work on the average and minimum values of the error in [Harl7]), mathematicians
were studying Dirichlet’s Divisor problem. Let d(n) denote the number of positive
divisors of n. Then Dirichlet’s Divisor problem is to determine the average size of
d(n) on integers n up to R. Noting that

Sam=Y 3 1=3 4]

n<R n<R dn d<R

we see that this is equivalent to counting the number of positive integer lattice
points under the hyperbola xy = R. For this reason, some refer to this as Dirichlet’s
Hyperbola problem.

As noted already by Hardy [Harl7], it’s known that

Z d(n) =cRlog R+ R+ O(R2),

n<R

and that N
2 .
/ ‘ > d(n) —erlogr — r| dr = X3 + O(X i),

1 n<r

analogous to the Gauss Circle problem. Attempts to further understand the error
terms in the Gauss Circle and Dirichlet Hyperbola problems have indicated that
there is a strong connection between the two, and often an improvement to one of
the problems yields an improvement to the other.



It is interesting to note that much of the early work of Hardy and Littlewood
on the Gauss Circle and Dirichlet Hyperbola problems occurred from 1914 to 1919,
which are the years when Ramanujan studied and worked with them at Cambridge.
Of particular import is a specific identity inspired by Ramanujan (as noted by Hardy
in [Har59]) that is now sometimes called “Hardy’s Identity”#, which states that

S2(R) — Vol B(VR) = VRS 2572) Ji(2nVnR), (1.2)

n>1

in which r9(n) is the number of ways of writing n as a sum of 2 squares and J, is
the ordinary Bessel function

A (_1)n v+2n
To(z) = ; F'n+1DI'(v+n+1) (/2.

Ivi¢ has noted in [IKKNO4] and [Ivi96] that almost all significant progress towards
both the Gauss Circle and Dirichlet Hyperbola problems have come from identi-
ties and approaches similar to (1.2), though sometimes obscured through technical
details.

1.1.1 An Early Connection to Modular Forms

One of the topics that Ramanujan devoted himself to was what we now call the
“Ramanujan tau function,” which can be defined by matching coefficients in

d r)gt =q ] g
n>1 n>1
Ramanujan noticed or conjectured that this function satisfies many nice properties,
such as being multiplicative. The individual 7(n) satisfy the bound
T(n) < n%“,
and numerical experimentation might lead one to conjecture that
Z T(n) < Rztite,
n<R

Just like the Gauss Circle and Dirichlet Hyperbola problem, it appears that sum-
ming over R many terms contributes only i to the exponent in the size. Further,
Chandrasekharan and Narasimhan [CN62, CN64| showed a result analogous to the
average estimate of Hardy and Littlewood, proving that

X r
/ | ZT(n)’2dr = X5 4 O(X 12,

0 n<r

IThis is another instance of Stigler’s Law of Eponymy.



1

This also indicates that the average additional exponent is ;

We now recognize that this is another analogy to the Gauss Circle problem,
except that in this case there is no main term. This analogy readily generalizes.

The Ramanujan 7 function appears as the coefficients of the unique weight 12
holomorphic cusp form on SL(2,Z), usually written

A(z) = ) 7(n)e(nz),

where here and throughout this thesis, e(nz) = e*™™*. Generally, we can consider a
holomorphic cusp form f on a congruence subgroup I' C SL(2,Z) of weight k, with

Fourier expansion

flz) = Z a(n)e(nz).

n>1

Let Sf(R) denote the partial sum of the first R Fourier coefficients,

n<R

Then Chandrasekharan and Narasimhan also show that
X 3
181 = x4 o),
0

indicating that on average, the partial sums satisfy
Si(R) < Rz Tate,

In other words, partial sums of coefficients of cusp forms appear to satisfy a Gauss
Circle problem type growth bound.

Further, the Gauss Circle problem can be restated as a problem estimating

Sa(R) = ra(n),

n<R

where 73(n) denotes the number of representation of n as a sum of two squares as
above. The coefficients ro(n) appear as the coefficients of a the modular form 6?(z),
so the analogy between S; and Sy is very strong. However 6% is not cuspidal, so
there are some differences.

In Chapter 3, we consider this “Cusp Form Analogy” and study Sf(n). We
introduce new techniques that are fundamentally different than most techniques



employed in the past. Of particular interest is the introduction of Dirichlet series of

the form
Z S¢(n)?
n>1 ne

including their meromorphic continuation and analysis. In Chapter 4, we give an
overview of the completed and currently planned applications of the analysis and
techniques for studying Sy(n) in Chapter 3. This includes an overview of several
recent papers of the author and his collaborators where these techniques have been
used successfully.

1.1.2 Further Generalizations of the Gauss Circle Problem

A very natural generalization of the Gauss Circle problem is to higher dimensions.
We will call the following the Gauss d-Sphere problem:

How many integer lattice points lie inside or on the d-dimensional sphere
of radius V'R centered at the origin? That is, how many points & € Z?
satisfy ||z|]? < R?

We use Sy(R) to denote the number of lattice points inside or on the d-sphere
of radius V'R, as occurs in the Gauss d-Sphere problem. As with the Gauss Circle
problem, it is intuitively clear that Sy(R) =~ Vol B4(v/R), where we use By(v/R) to
denote a d-dimensional ball of radius V'R centered at the origin. Just as with the
Gauss Circle problem, the true goal of the Gauss d-Sphere problem is to understand
the lattice point discrepancy Sg(R) — Vol By(vV'R).

The Gauss d-Sphere problem is most mysterious for low dimensions, but perhaps
the dimension 3 Gauss Sphere problem is the most mysterious. For an excellent
survey on the status of this problem, see [IKKNO04].

The Gauss d-Sphere problem is not considered in detail in this thesis, but in
Chapter 4 a new approach on aspects of the Gauss d-Sphere problem is outlined which
builds on the techniques of Chapter 3. This is a project under current investigation
by the author and his collaborators.

Closely related to the Gauss d-Sphere problem is the problem of determining
the number of lattice points that lie within By(v/R) and which lie on a one-sheeted
hyperboloid

Hop=X;+-+X5 ,=X+h



for some h € Z>1. We use Ny,(R) to denote the number of lattice points within
Bd(\/}_%) and on Hgyp. This is a problem within the larger class of constrained lattice
counting problems.

The dimension 3 one-sheeted hyperboloid problem is the first nontrivial dimen-
sion, and just as with the standard Gauss d-Sphere problem, the dimension 3 hyper-
boloid is the most enigmatic. Very little is currently known. A significant reason for
the mystery comes from the fact that this is too small of a dimension to apply the
Circle Method of Hardy and Littlewood, and there doesn’t seem to be an immediate
analogue of Hardy’s Identify (1.2). In fact, it’s not quite clear what the correct sep-
aration between the main term and error term should be. The best known result is
the recent result of Oh and Shah [OS14], which uses ergodic methods to prove that

N3 n(R) = ¢R?log R + O(R%(log R)%) (1.3)

when h is a positive square.

From the perspective of modular forms, the underlying modular object is the
modular form #%*(2)6(z). But in contrast to the variants of the Gauss Circle prob-
lem discussed above, Ny, (R) is encoded within the hth Fourier coefficient of #9416,
which affects the shape of the analysis significantly.

In Chapter 5, we consider the problem of estimating the number Ny ,(R) of points
on one-sheeted hyperboloids. Along the way, we study the Dirichlet series

rd,l(nZ + h)
2wy

n>1

and its meromorphic properties, and use it to get improved estimates for Ny, (R).

1.2 Outline and Statements of Main Results

Chapter 2.

Chapter 2 consists of background information used in later sections. In particular, a
variety of properties concerning Eisenstein series are discussed and referenced from
the literature. The second half of Chapter 2 concerns a complete description of three
Mellin integral transforms. It is shown that two smooth integral transforms can be
used in tandem to establish a sharp cutoff result, which is employed in Chapter 5
and in the applications described in Chapter 4.



Chapters 3 and 4.

Chapter 3 is closely related to the journal article [HKLDW17a], which was published
in 2017. In this Chapter, we introduce and study the meromorphic properties of the
Dirichlet series

Z% ZSf(”jLW7 and ZM (2.1)

where f and g are weight & cuspforms on a congruence subgroup I' C SL(2,7Z) and
where S;(n) and Sy(n) denote the partial sums of the first n Fourier coefficients of
f and g, respectively.

The first major result is in Theorem 3.4.8 and Corollary 3.4.9, which show that
the series in (2.1) have meromorphic continuation to the plane with understandable
analytic properties.

As a first application of this meromorphic continuation, we prove the major
analytic result of the chapter in Theorem 3.5.3, which states that

k-1
n>1

and related results, for an explicit constant C'. In terms of the analogy to the Gauss

Circle problem, this is a smoothed second moment and is comparable in nature to

the mean-square moment bound of Hardy and Littlewood (1.1). As the Dirichlet

series in (2.1) are new, this smoothed result is a new type of result.

Chapter 4 is a description of further work using the Dirichlet series (2.1) and
its meromorphic continuation. This includes the work in the papers [HKLDW17¢]
and [HKLDW16]. Further applications are described, as well as preliminary results
from the author and his collaborators on this topic.

Chapters 5 and 6

Chapter 5 focuses on studying the One-Sheeted Hyperboloid problem. The Dirichlet
series

Z rd_l(n2 + h)

~ (2n2 + h)*
is studied, and the first major result of the Chapter is in Theorem 5.3.13, which
states that this Dirichlet series has meromorphic continuation to the plane with

understandable analytic behavior.



Using this meromorphic continuation, three applications are given. Firstly, there
is Theorem 5.5.1, which gives a smoothed analogue of the number of lattice points
Ngpn(R) on the one-sheeted hyperboloid Hyp, and within By(vV/R), including many
second order main terms. This Theorem can be interpreted as a long-interval
smoothed average, with many secondary main terms.

Secondly, there is Theorem 5.5.3, which proves a short-interval sharp average re-
sult. But the most important result of the chapter is Theorem 5.5.4, which improves
the state of the art estimate of Oh and Shah in (1.3) by showing that

N3,h(R) = C/R% logR + CR% + O(R%fi‘ﬁf)

when h is a positive square. When A is not a square, the R: log R term does not
appear. In fact, the theorem is very general and gives results for any dimension
d> 3.

In Chapter 6, we describe an application of the methods and techniques of Chap-
ter 5 to asymptotics of sums of the form

Z d(n®+ h),

n<X

where d(m) denotes the number of positive divisors of m.



CHAPTER TWwWO

Background
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In this chapter, we review and describe some topics that will be used heavily in
later chapters of this thesis. This chapter should be used as a reference. The topics
covered are classical and well-understood, but included for the sake of presenting a
complete idea.

2.1 Notation Reference

We use the basic notation of Landau, so that
F(z) < G(z)
means that there are constants C' and X such that for all x > X, we have that
|F(z)] < CG(z).

We use F(z) < G(z) and F(z) = O(G(z)) interchangeably. We also use

to mean that for any € > 0, there exists an X such that for all z > X, we have that
F(z) < eG(x). On the other hand,

F(x) = Q(G(x))

means that F' and G do not satisfy F(z) = o(G(x)). Stated differently, F(z) is as
least as large as G(z) (up to a constant) infinitely often.

We will use r4(n) to denote the number of representations of n as a sum of d
squares, i.e.
ra(n) = #{wGZd:x%+...+x3:n}_

We will denote partial sums of r4(n) by Sy, i.e.

Sa(X) = Z rqa(n).

n<X

We use B(R) to denote the disk of radius R centered at the origin. It is traditional
to talk about the Gauss Clircle problem instead of the Gauss Disk problem, and so
we will frequently refer to B(R) as a circle. We use B,;(R) to denote the dimension
d ball of radius R centered at the origin, and for similar conventional reasons we
will frequently refer to By(R) as a sphere. Throughout this work, we will never
distinguish between points on the surface of a sphere and those points contained
within the sphere, so we use these terms interchangeably.
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With respect to classical modular forms, we typically use the conventions and
notations of [Bum98, Gol06].

Typically, f will be a weight £ holomorphic modular form on a congruence sub-
group of SL(2,Z). By this, we mean the following. A matrix v = (2%) € GL(2,R)
acts on z in the upper half plane H by

az+b
cz+d

vz =

A holomorphic modular form of (integral) weight k£ on a congruence group I' C
SL(2,Z) is a holomorphic function f : H — C, which satisfies

flyz)=(cz+d)"f(z)  fory=(2}) €T, (1.1)

and which is holomorphic at oco. The latter condition requires some additional clari-
fication, and an excellent overview of this concept is in the first chapter of Diamond’s
introductory text [DS05]. In the context of this thesis, this latter condition guaran-
tees that f has a Fourier expansion of the form

f(z) =) a(n)e(nz),

n>0

where e(nz) = €*™#. If in addition a(0) = 0, so that the Fourier expansion does not
have a constant term, then we call f a holomorphic cusp form.

Note that some authors adopt the convention of writing the Fourier coefficients
as a(n) = A(n)n 2 , which is normalized so that A(n) ~ 1 on average. We do not
use normalized coefficients in this thesis.

When it is necessary to use a second holomorphic modular form, we will denote
it by g and its Fourier expansion by

g(z) = Z b(n)e(nz).

n>1

Partial sums of these coefficients are denoted by

SHX) = a(n),  Sy(X):=) b(n).

n<X n<X

In Chapter 5, we will use half-integral weight modular forms extensively. Let
j(7, 2) be defined as

j(fy,z)zegl (CEZ) (cz—i—d)%, v € Ty(4),
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where e, =11 d=1mod4 and ¢4 = 7 if d = 3 mod 4. This is the same transfor-
mation law that is satisfied by the Jacobi theta function 0(2) = 3°, _, €2™"**, which
is the prototypical half-integral weight modular form. Then a half-integral weight
modular form of weight k£ on I'y(4) is defined in the same was as a full-integral weight
modular form, except that it satisfies the transformation law

fvz) =j(y,2)*f(z)  for y € To(4)

instead of (1.1). Note that we will use k£ to denote a full integer or a half integer in
reference to “modular forms of weight £.” This is a different convention than some
authors, who use k/2 in discussion of half-integral weight forms.

Given two modular forms f and ¢ defined on a congruence subgroup I' C SL.(2, Z),
we will let (f, g) denote the Petersson inner product

(f,g) = / Crere

In this expression, H denotes the complex upper half plane and du(z) denotes the
Haar measure, which in this case is given by

dx dy
v

dp(z) =

We will use (%) to denote the Jacobi symbol. Note that this sometimes may look
very similar to a fraction. Generally, the Jacobi symbol involves only arithmetic
data, while fractions will have complex valued arguments.

We also roughly follow some conventions concerning variable names.

The primary indices of summation will be m and n. If there is a shifted summa-
tion, we will usually use h to denote the shift. We will sometimes use ¢ to denote
a distinguished index of summation (or more generally a distinguished variable in
local discussion). The one major exception to this convention is the index j, which
we reserve for spectral summations (and in particular the discrete spectrum) or as
an index for residues and residual terms appearing from spectral analysis.

Complex variables will be denoted by z, s, w, and u. Almost always z = = + iy
will be in the upper half plane H, and denotes the complex variable of the underlying
modular form. The other variables, s, w, and u denote generic complex variables and
usually appear as the variables of various Dirichlet series. We often follow the odd
but classical convention of mixing Roman and Greek characters, and write s = o +it.
Note that we sometimes use ¢ to denote a generic real variable in integrals.

If L(s) is an L-function, then L@ (s) denotes that L -function, but with the Euler
factors corresponding to primes p dividing ¢ removed.
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We use a to denote a cusp of a modular curve. In this thesis, this almost always
means that a is one of the three cusps of I'g(4)\H.

2.2 On Full and Half-Integral Weight Eisenstein
Series

The primary goal of this section is to describe some characteristics of the weight &
Eisenstein series for I'g(4), both for full-integral weight and half-integral weight k.
These details are often considered standard exercises in the literature, and are usually
tedious to compute. We will emphasize the important properties of the Eisenstein
series necessary for the argument in Chapter 5 — some with complete proofs, and
some with descriptions of the method of proof.

Selberg defined the weight 0 classical real analytic Eisenstein series F(z,w) on
SL(2,Z) by

E(z,w) = Z Im(vyz)°.

vET o0\ SL(2,Z)

The weight 0 Eisenstein series E(z, w) is very classical and very well-understood, and
both [Gol06, Chapter 3] and [Iwa97, Chapter 13| provide an excellent description of
its properties.

Weight k Eisenstein series are also very classical, but they appear less often and
with much less exposition in the literature. Half-integral weight Eisenstein series
occupy an even smaller role in the literature, although in recent years the study of
metaplectic forms and metaplectic Eisenstein series has grown in popularity.

We will use E¥(z,w) to denote the weight k Eisenstein series associated to the
cusp a. In this expression, k can be either a half-integer or a full-integer. In this
thesis, we use the half-integral weight Eisenstein series on the congruence subgroup
['o(4). The quotient T'g(4)\H has three cusps, at 00,0, and 1.

We shall describe the three Eisenstein series EX (z,w), E§(z,w), and E%(z,w),

both for full-integral weight and half-integral weight k. These Eisenstein series are
defined as

w€2k (40)2k

_ Y &y
B (z,w) = Im(y2)"J (7, 2)" % = 1
veFo.Z\;oM) i(c,dX):eZQ |dcz + d|>=F(4ez + d)F
(e,d)#(0,0)

ged(4e,d)=1
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w 2k
o A )

— 2w—k(_ k

Wit |—c+ dz| (—c+dz)
(¢,d)#(0,0)
ged(4e,d)=1
w2k (2c)2F

ed (%)

22+ 1 \k Y ey
Er(z,w) = ( ) EY (2 w) = Z d .
3(2,0) 122 4 1] (7 ) 12¢cz + d|?v=F(2cz + d)*
+(c,d)eZ?
(¢,d)#(0,0)
ged(2¢,d)=1

In these expressions, €4 denotes the sign of the Gauss sum associated to the primitive
real quadratic Dirichlet character x4, and is given by

1 d=1mod4,
Eqd =
i d=3mod4.

We use J(7,z) to denote the normalized half-integral weight cocycle J(v,z) =
J(v,2)/1j (7, z)|, where j(7, z) is the standard 6 cocycle

(7, 2) == 0(72)/60(z) = 5" (g) (cz +d)*.

Here, 6(z) denotes the Jacobi theta function, which is a modular form of weight %
on I'g(4). Thus this cocycle law holds for v = (2¢5) € To(4).

Notice that when £ is a full integer, the weighting factor simplifies to

k k
o (AN _ (1
d \ dq d )’

and when k£ is a half-integer, the weighting factor simplifies slightly to

2k
#(3) -2 (2)
d d

(where in both cases the 4 is replaced by 2 for E¥). This is a restatement of the

2
fact that when k is a full integer, the transformation law is full-integral with char-
acter (_—1)k, while for half-integers the transformation law is a power of a standard

normalized theta cocycle.

When £ is a half-integer, these three Eisenstein series are essentially the same
three Eisenstein series that appear in [GH85], only with some notational differences.
Firstly, in [GH85], half-integer weights are denoted by %, while in this work we
denote all weights (both integral and half-integral) by k. Secondly, we shift the
spectral argument, replacing w with w — % as compared to [GH85]. This has the
effect of using the normalized cocycle J(7, z) instead of j(7, z), and also normalizes
the arguments of the L-functions that appear in the coefficients of the Kisenstein

series.
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Each Eisenstein series has a Fourier-Whittaker expansion of the form

Ef(z,w) =y + pk(0,w)y' ™ + ) ph(h, w) Wi

1,1 (47| Aly)e*™
ho B2

N

for some coefficients p¥(h,w), and where W, (y) is the GL(2) Whittaker function.
This is given by [GH11, 3.6.3]

. / eV O (1 4 )R dL,
3) Jo
valid for Re(v — o) > St and |arg(y)| < .

When a = 0, the Whittaker function is just the K-Bessel function

3 1 = —s5yutu— udu
Woul) = (DFRAG). Kl = [ e el

Thus in the weight 0 case, the Whittaker functions simplify to K-Bessel functions
(as noted and employed in [Gol06] for instance). This additional difficulty in weight
k is perhaps one reason why most expository accounts stop at the weight 0 case.

According to the general theory of Selberg (and described in [Iwa97, Theorem
13.2]), the potential poles of E¥(z,w) for w > 1 can be recognized from the poles of
the constant coefficient p(0, w).

Although the individual expansions vary, they are usually of a very similar form.
For full integral weight, the coefficients have the shape
LE(2w — 1) 2w —1)
Ly(2w) T(w+ §)I(w - 3)
|h|w_1 1
L (2w) T(w + \_ZI%)

pa(0,w) = ()

pa(h,w) = (%) Dy (h, w)

where (x) is a (possibly zero) constant times a collection of powers of 2 and 7, L%(s) is
a GL(1) L-function (maybe missing some Euler factors), and D¥ is a finite Dirichlet
sum. For Rew > 1, the only potential pole of E¥(z,w) is at w = 1. This is shown in
general in [Iwa97|, and the calculations are very similar to those in [Gol06, Chapter
3]. For completeness and as a unifying reference, we recompute and state the exact
coefficients of E* in §2.2.1.

For half-integral weight, the coefficients have similar shape,

LF(4w —2) 2w —1)
Lé(dw — 1) T(w + 5T (w — §)
P w) = ()| —

hl
w+

Pa(0,w) = (¥)
(2.1)
Df(hﬂ w)v

N |
SN—
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except that now D¥(h,w) is a complete Dirichlet series formed from Gauss sums,
and which factors as

L(2w — %7 Xk,h) ~

DE(h,w) = (D) Dq(h,w), (2.2)

where ﬁa(h, w) is a finite Dirichlet polynomial and yy 5, is the real quadratic character

associated to the extension Q(v/uh), and where p, = (—=1)*"2. In other words,

these are almost the same as the full integral weight Eisenstein series, except with

an additional L-function in the numerator, and with slightly different arguments of
1

the involved L-functions. For Rew > 3, the only potential pole of E¥(z,w) is at

w = 3. This is all described in [GH85], including the factorization in (2.2), which
is given in [GHS85, Corollary 1.3]. For completeness and as a unifying reference, we
recompute and state the shape of the coefficients of E¥ in §2.2.2, including a proof

of the factorization (2.2).

The rest of this section consists of a complete description of these coefficients.
However, the general shapes of the coefficients are sufficient for the rest of this thesis.

2.2.1 Full Integral Weight

Claim 2.2.1. Fork > 1 a full integer, the Fourier- Whittaker coefficients of EX (2, w)
are given by

0 if k odd
p]éo(07 ’LU) = yl—w2ﬂ_4l—3u)<(2w B 1) F<2w — 1)

(@ (2w) T(w+ 5w - 3)

if k even

w hw—l —ink
i) = T D ()
L(Zw, <_—) )F(w+75)

where

D&(h) u}) = Z (4cc)2w <ewzlch + (_1)k€3g2h>

clh

1$ a finite Dirichlet sum.

This is a classical computation. For completeness and ease of reference, we go
through this computation completely. The coefficients for other full integral weight
Eisenstein coefficients are very similar, and are achieved through (essentially) the
same work.
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Proof. In the expression for E* (z,w), when (c,d) = (0, 1), there is the single term
y". We compute the rest of the Oth Fourier-Whittaker coefficient through

A - - v ()
Poo<0’w)—/E (zw) —yde = > /|4cz+d|2w ez 1 d)F

c>0, dGZ
gcd(4c d)=
We write (‘74) in place of ( ) to facilitate our next step, and as a way of reinforcing

that ged(d,4) = 1. Multiplying through by L(2w, (—4)k) and distributing allows us
to remove the ged(4c,d) = 1 condition from the sum, so that

i 1
poo<07w) ZZ ( ) ‘4cz—|—d|2w k(4CZ+d) du

L( c>0 d

y“’ 1 —4 Lt4s 1
_ - i
Z (4c)2v zd: ( d ) /f 22wk ok O

L(w, ())&

We can write d = d' + 4c¢q for each d’ mod 4c¢ and ¢ € Z uniquely, and executing the
resulting ¢ sum tiles the integral to the whole real line, giving

k 0o
i yv 1 —4 1
= — - d=x.
pool0,0) 2 T 2 (d> /oo [P

L(2w7 (;4)k) c>0 d mod 4c

Notice that the d sum is 0 if k is odd, and is 2¢ (the number of odd integers up
to 4¢) when k is even. Further, when k is even the L-function in the denominator
simplifies to a zeta function missing its 2-factor.

It remains necessary to compute the integral. By [Iwa97, Section 13.7], we have
the classical integral transform

e 1 I'2w —1
/ — y1—2w7_(_41—w ( w ) . (23)

o PR D(w+ 5w~ 5)

Therefore, we have for k even that

(2w —1) I'2w —1)
¢2(2w) T(w+ 5l (w = 5)

Pho(0,w) =y Tr2mdl =

For the hth Fourier coefficient, the method begins similarly. Following the same
initial steps, we compute

1
p’cfo(h,w):/ E (z,w)e™?™he g
0

w k 1+2Z —2mihx
Yy 1 (—4) 9 hd / i e
— _— e 4c —dl’

c>0 4c
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Writing d = d’ + 4cq as above again tiles out the integral, so that

k 00 —2mihx
k = yw 1 —4 27 2d €
Prao(hyw) = Z (4c)2w Z (7) e e /oo ’Z‘wakzkdl"

L(2w7 (__4)’6) c>0 d mod 4c

For h # 0, the integral can be evaluated as in [Iwa97, §13.7] or using [JZ07,
3.385.9] to be

dr —
e = T i

[e%e) 6727riha: yfwifkﬂ.w h w—1
/ |4 (anlhly). (2.4)

To understand the arithmetic part,
1 —4\" _ha
- - 71"7/%
Sam 2 (F)
c>0 d mod 4c

note that each d can be written uniquely in the form d = d’ + 4¢ for 0 < d’ < 4 and
0 < ¢ < c. Then the arithmetic part is written

3 k
1 (‘4) mihd 2mi "4
w2 ) e
c>0 (46) d=0 d q mod ¢
The final sum over ¢ is
Z it 0 if C 'f h
e c =
B c ifelh.

Therefore the arithmetic part simplifies down to

> (4cc)2w (7% + (~1)Fe 5).

clh

Simplification completes the proof. O

2.2.2 Half Integral Weight

The pattern here is almost the exact same as with full-integral weight. We will prove
the expansion for E* (z,w) completely. The primary difference is that there is now
a Dirichlet series of Gauss sums, which can be factored as a ratio of a Dirichlet
L-function and a zeta function, up to a short correction factor.

Claim 2.2.2. Fork > % a half integer, the Fourier- Whittaker coefficients of E* (z,w)
s given by

ph0.0) =

1+ 1Y ((dw-2)  T(2w-—1)
2 ) 2001 — 1 (4w — 1) T(w+ &)F'(w — §)
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ZTrk

" = gn(4e)
F( + |h| k:) o (462“’)’

g = > e (5) e(®)

d mod ¢

where

18 a Gauss sum. The Dirichlet series associated to these Gauss sums can be written
as
gn(4c) L® 2w — 3, Xkpn)

G = can—1) =)

c>1

as proved in Proposition 2.2.3.

Proof. As in the full-integral weight case, we compute the constant Fourier coefficient
through

k ! y"ed’ ( d )
— [ B —yrde =Y .
Peo(0,w) /0 wo(2,w) —y*dz = / |dcz + d|>w=F(4ez + d)F

c>0, dEZ
gcd(4c d)=

The only difference in comparison to the full-integral weight case is that the numer-
ator has &2 (%). Notice that the character enforces ged(4e,d) = 1, so that this

condition can be dropped from the summation indices.

Factoring (4c)™2%, writing d = d’ + 4cq for each d’ mod 4c and a unique ¢ € Z,
performing the change of variables © — = — 4%, and tiling the integral functions
exactly as in the full-integral proof, and leads to

1 o [ 4c /°° 1

N — ——dx.

3 (4c)2v > e <d) ekt
c>0 d mod 4c

Using the evaluation of this integral from (2.3), we see that the Oth coefficient can
be written as

ok (40) T4 D25 — 1

de )
0\ d) T(w+ 5w — &)

d mod 4c

It is now necessary to understand the arithmetic part, given by

2(461)2w d o e (%). (2.5)

c>0 d mod 4c

Noting that we can rewrite ¢4 as

1

i = 5 0@ + X1 (@) + 5040~ x1(@),
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where y_1(d) = (5}) is the Legendre character associated to when —1 is a square,
we see that the d summation is trivial unless the character (47‘3) is trivial. (This

follows from classical observation that summing a non-trivial character over a whole
group gives zero). Thus the sum is nontrivial if and only if ¢ is a square, and when
c is a square we have that

4c? 1 4 2k
2k o 2k 2
E €5 <—d ) = E el = 5 o(4c).

d mod 4c? d mod 4¢?
ged(d de)=1

Therefore (2.5) can be written as

1+¢2’fZ 1 p(4?) = 1+42 1 §(4w—2).
2 (4c2)2w 2 24w-l _1¢(4w —1)

c>0

The last equality follows from comparing Euler products, correcting the missing 2-
factor, and simplifying. Combining the arithmetic part with the analytic part gives
the pf (0, w).

Computing the Ath Fourier coefficient is very similar. After following the same
initial steps to tile out the integral, we get the equality

w ,—2mihx

b —2miha 1 ok (4C\ nay [T YYe
; E(z,w)e dx:ZW Z e\ 6(@) - |Z|2w_kzkda:.

c>0 d mod 4c
This integral was evaluated in (2.4), so we see that this becomes
fiﬂ'k/27.‘_w|h|w71

1 4c
Wi Arlhly) S g%(—)eh—f.

d mod 4c

(&

The arithmetic part is now a Dirichlet series of Gauss sums, and is not finite. Sim-
plifiying completes the computation. O

On the L-series associated to half-integral weight Eisenstein
series coefficients

We now consider the Dirichlet series

appearing in the hth Fourier coefficients of E* (z,w) when k is a half integer. The
goal of this section is to show the following proposition.
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Proposition 2.2.3.

gr(de)  LP(2w — 5, xrn)
(4e)2 (@M (4w - 1)

D (h, w),

c>1

where Elgo(h, w) s a finite Dirichlet polynomial.

We prove this proposition through a series of 1enr11rnataT First, we first consider

just an individual Gauss sum g(4c) = >, oqasccre(2d) (2). It is necessary to

break each Gauss sum into two pieces.

Lemma 2.2.4.

¢ —1dgc’—1 2¢ d
wi) = ¥ 0T (T (D) e,

ds mod 2¢

Proof. Write 4¢ = 2%¢ where ged(c,2) = 1. Note that we necessarily have a > 2.
For any d mod 4¢, we write d = d,2% + dyc’ with d; varying mod ¢’ and dy varying
mod 2¢. Using this, we can write

4c 12¢ c 2%¢
S o) (D)o T Y s (JFC)

d mod 4c (d1 mod ¢’) (d2 mod 2%)

_ 2k (hdy 2¢ d hd;
- > e (7) X (qmtae) )

d2 mod 2¢ 1 mod ¢/

Note that ds is necessarily odd. By quadratic reciprocity, we can rewrite the
inner sum as

c d12% + doc d—1dyd—1
S () = X (MEEE) e

di1 mod ¢/ di1 mod ¢’

= 3 (M) )

di1 mod ¢/

Inserting this back into gy, (4c) gives

ds mod 2« d1 mod ¢/
2% dordd ot gy g (27 di\  (ha
- Z gd2C/(_1) : : 6(2_‘12)80’ <d_ e Z ? 6( Cll)'
dz mod 2¢ 2 dy mod c
Note that we have introduced e.e;!. This ends the proof of the lemma. ]

tYes, that is a real word. And it’s a fantastic word.
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The d; sum is now completely decoupled from the ds sum, and they can be
understood separately. We first understand the d; summation.

Lemma 2.2.5. For odd c, define
Hy(c) == e, Z d e(24)
dmod ¢ ¢ 7

as occurs in the dy summation in gy(4c). Then Hy(c) is multiplicative.

Proof. Let ny and nsy be two odd relative prime integers. By the Chinese Remainder
Theorem, and congruence class d mod nins can be uniquely written as d = bon;+bino
where by is defined modulo ns and b; is defined modulo n;. Then

d
Hh(n1n2) = Enyng Z <n1n2) e(n?ﬁg)

d mod nins

_ bznl + bln2 hbani+bing
= €ning € nin
n1n2 1n2

b1 mod ny bs mod no

(B () 5, (e 5 (2)e

b1 mod n1 b2 mod na
—1 -1 (N2 m
= €n1n2€n11€n21 <—) (—) Hh(nl)Hh(ng).
m T2
Casework and quadratic reciprocity shows that Enina€pr ! 5;21 (:LT?) <Z—;> =1, so that
Hh(nlng) = Hh(nl)Hh(ng). ]

In order to understand a Dirichlet series formed from Hy(c'), it will be sufficient
to understand Hj,(p*) for odd primes p. When p { h, these are particularly easy to
understand.

Lemma 2.2.6. Suppose p is an odd prime and p{ h. Then

o= {77 12,

Proof. When k = 1, we have
d h —h
- 5 ():0-5(2) o () s
d mod p p p p

as Hp(p) is very nearly a standard Gauss Sum, as considered in the beginning
of [Dav80].
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For k > 2, there are two cases. If k is even, then the sum is exactly a sum
over the primitive pF-roots of unity, and therefore is zero. If k is odd, then writing
n = e>™/P" as a primitive pF-root of unity, we have

Hy(p) = Y (%)Z > (g): 2 (g)

d mod pk d mod pk b mod p
¢ mod pF—1
b
b c
=Y 7 (— > =0,
b mod p p ¢ mod pk—1
as the inner sum is a sum over the primitive p*~! roots of unity. O

The case is substantially more complicated for primes p dividing h. For this
thesis, we do not need to calculate these explicitly. (Although we could, using these
techniques). It is sufficient to know that only finitely many contribute.

Lemma 2.2.7. Suppose p is an odd prime and p | h. Further, suppose p* | h but
p LY h. Then for k > €+ 2, we have Hy,(p*) = 0.

Proof. This is substantially similar to the case when p { h, and the same proof carries
over. When k is even, Hj,(p*) is a sum over primitive p*~* roots of unity. When k is
odd, Hy(p*) has an inner exponential sum over the p*~*~! roots of unity. O

Remark 2.2.8. Although we do not compute it here, it is possible to compute the
exact contribution from each factor p dividing h. One complete reference can be
found at the author’s website [LD]. Some subcases are included in [GHS85].

We now seek to understand the dy summation in Lemma 2.2.4.

Lemma 2.2.9. We have

o o _1 k?-‘rl
eifc/(—l) 725 1531 = 55’; <<C#) ) (2.6)

In particular,

¢/—1 dac’ = 2¢ -1 k+1 L
> vt (7)= 2 @ (500 (7))

ds mod 2¢ ds mod 2¢

Proof. First note that as €5 = 1, we can reduce the analysis into two cases: when
2k = 1 mod 4 and when 2k = 3 mod 4. After this reduction, the equality in (2.6) is
quickly verified by considering the possible values of dy and ¢ modulo 4 (recalling
that both dy and ¢’ are odd). The rest of the lemma follows immediately. O
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In this simplified dy summation, there appears £2* »» which acts a bit like a char-

acter in dy modulo 4, and (%), which acts a bit like a character modulo 8, and an

unrestrained exponential. Therefore we should expect that when 2¢ > 8, or rather
when a > 4, then the entire dy sum vanishes unless h is highly divisible by 2.

Lemma 2.2.10. Suppose 2° | h and 21t h. If a > { + 4, then the dy summation

vanishes, i.e.
2
E éfl’; (_dg) e(—’;flf) =0.

ds mod 2%

Proof. Without loss of generality, choose least non-negative representations for each
dy mod 2¢. Write dy = 8d' + d” where 0 < d' < 23 and 0 < d” < 8 Then
Egqrqr = Eqr and ( d,i d,,) = (3—7,), so the d’ summation can be considered separately.

This summation is
* 3
Z ¢ 20473 ’

4'=0
which is 0 unless 273 | h. O

As ¢ = 2%, we see that the dy summation constrains the contribution from the
2-factor of c¢. We are now finally ready to prove Proposition 2.2.3.

Proof of Prop 2.2.3. We try to understand

B 5,700

c>0 d mod 4c
(-1 2k <2‘“)
IR ( o )m 8 e (;
T oged(2,0)=1

(Z > gwcne(E) (i))( S %(%)Hh(c))@.?)

a>2 do mod 2% c>1
ged(e,2)=1

We have used Lemma 2.2.4 and Lemma 2.2.9 to split and simplify this expression. Let

(-nH*3

xk(c) == for ease of notation. As the summands over ¢ are multiplicative

(by Lemma 2.2.5), the ¢ sum can be written (for Rew > 1) as
1 Xe(P)Hu(p) | xu(p*) Ha(p?
> CQ—ka(C)Hh(C)=H<1+ «(p) h()+ (7)) i )+>

2w 4w
e>1 P p p
ged(e,2)=1 p#2
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For primes not dividing h, this expression simplifies significantly as Hj(p*) = 0
for k > 2 (as shown in Lemma 2.2.6). The product over these primes is then

h(=1)*"2
H <1+ ( pmf—l )>
pi2
pih

On primes avoiding h and 2, it’s quickly checked that this perfectly matches the

1
Euler product for L(2w — 3, xx)¢ (4w — 1)~ where xp4(+) = (w) Therefore
we can write the product over those primes avoiding hA and 2 as

1
H (1 4 (h(—g’“ ?)> . L(g)(Qw - ‘7Xk h)
p P2 (M (dw —1)
P72
plh

(Note that we are using the convention that L(?)(s) denotes an L-function L(s), but
with the Euler factors for primes p dividing @) removed).

We now consider the primes p which do divide h in the Euler product in (2.7).
By Lemma 2.2.7, we see that Hj,(p*) = 0 when p*~! { h. Therefore the product over
primes dividing A is a product of finitely many terms of finite length, and is thus
just a Dirichlet polynomial.

Similarly, by Lemma 2.2.10, the sum over dy and « in (2.7) is a finite sum whose
length depends on the 2-factor of h, and is also a Dirichlet polynomial.

We group the product over primes dividing h with the dy and o summation
n (2.7), which are both finite Dirichlet polynomials, into a single Dirichlet polyno-
mial

Dk h U) Z Z 2aw€d2 dQQh ( > HZ Xk 2]w

a>2 dg mod 2% P 3>0
plh
p#2

Note carefully that although this is written as an infinite polynomial, it is a finite
Dirichlet polynomial.

Collecting these pieces together we have now shown that

1 4 L(2)(2 — L n) ~
Z (40)211) Z €3k€(4c) (dc) - C(2h§l(]4w2_>;];h Dl;o(ha'w)a

c>0 d mod 4c

as we set out to show. O
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Remark 2.2.11. If h is squarefree, then it is possible to show that D¥ (h,w) has
the necessary Euler factors to “fill in” the h factors of (*") (4w — ¢) (although not
the 2 factor), and the expression for DX (h, w) simplifies significantly. Thus the case
when h is squarefree is significantly simpler.

2.3 Cutoff Integrals and Their Properties

We recall the Mellin transform and inverse Mellin transform, and use these to con-
struct appropriate integral transforms to analyze properties of the coefficients of a
Dirichlet series. In general, if

o= [ st

then F(s) is the Mellin transorm of f(x). Mellin transforms are deeply related to
Laplace transforms and Fourier transforms, and when f and F' are sufficiently nice,
there is an analogous inversion theorem giving that

1
T) = — F(s)x™%ds.
7(@) A;<>

- omi

Cesaro Cutoff Transform

In this thesis, we reintroduce and use Cesaro weights. Note that these are sometimes
referred to as “Riesz Means.” Given a positive integer k and a Dirichlet series

we have the fundamental relationship

1 n\k 1 X4
mea(n)(l_Y) :%/(U)D(S)s(s+1)...(s+k)d$
1 D X°T(s) (3.1)

=i o, P9 D

where o is large enough that D(s) and the integral absolutely converge. The indi-

vidual weights (1 — %)* on each a(n) are the k-Cesaro weights, and give access to
smoothed asymptotics.

The relationship (3.1) follows from the following integral equality.
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Lemma 2.3.1. For o > 0, we have

k .
1 Y 50 =5)" Y >1,
0 if Y < 1.

270 Jigy (s +1)--- (s + k)

Proof. In the case when Y > 1, shifting the contour infinitely far to the left shows
that the integral can be evaluated as

s k(v i
Zsfie?(s(s+1)§-/--(s+k)):;%:%<1_%)k'

Note that the last equality is an application of the binomial theorem.

In the case when Y < 1, shifting the contour infinitely far to the right shows that
the integral is 0. O]

To recover (3.1), one expands D(s) within the integral and applies the lemma to
each individual term with Y = (X/n).

Exponentially Smoothed Integral

The integral definition of the Gamma function
e dt
[(s) = / te t—
0 t

is a Mellin integral, and gives the inverse Mellin integral

1
o= [ aT(s)ds.
e 2 )., x°T'(s)ds
Applied to the Dirichlet series D(s), we have
1
g a(n)e™X = — D(s)X°T'(s)ds.

1 21 (o)

Concentrating Integral

We now produce an integral transform that has the effect of concentrating the mass
of the integral around the parameter X. We claim that

1 52\ X° 4 1 Y?log? X
— exXp\ - | =ds=—exp| ——— | .
2mi J o) Plyz )y o P 4
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Proof. Write X* = e*1°¢X and complete the square in the exponents. Since the
integrand is entire and the integral is absolutely convergent, performing the change
of variables s — s — Y2log X/27 and shifting the line of integration back to the

imaginary axis yields
1 Y2log® X / 2y ds
—exp | — e —.
211 47 (0) Y

The change of variables s — isY transforms the integral into the standard Gaussian,
completing the proof. O

Applied to a Dirichlet series D(s), we have

1 Y2log*(X/n) 1 ns? X*
— D OSY T2 V2 s,
2m £~ an) exp ( 4m 2mi /(U) P ( Ys ) y

Note in particular that when |n — X| is large, there is significant exponential decay.
Therefore this integral concentrates the mass of the expression very near X (and in
particular in an interval of width X/Y around X).

Cutoff Integrals from Smooth, Compactly Supported Functions

It will also be useful to document a more general family of cutoff transforms. For
X,Y > 0, let ¢y (X) denote a smooth non-negative function with maximum value
1, satisfying

(i) ¢y (X)=1for X <1,

(i) ¢y(X)=0for X > 1+ &.

Let ®y(s) denote the Mellin transform of ¢y (x), given by

Br(s) = [ o,

defined initially for Res > 0. Repeated applications of integration by parts and
differentiation under the integral shows that ®y (s) satisfies the following four prop-
erties:

(i) Oy (s) = {4+ O0s(5),
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(il) ®y(s) = =3 + Os(3)
(i) By (s) = —L [V ¢ (t)tsdt,

(iv) and for all positive integers m, for s constrained within a vertical strip and

|s — 1| > €, we have
1 Y \m
P - ( )
(8 < T

Further, the last property can be extended to real m > 1 through the Phragmén-
Lindel6f principle. The Mellin transform pair @y (s), ¢y () gives a general set of
integral cutoff relations,

1
a(n) + a(n)dy (=) = — [ D(s)®y(s)X"ds.
7;( X<n§2X:+X/Y ' <X> 21 J (o) '



CHAPTER THREE

On Dirichlet Series for Sums of
Coeflicients of Cusp Forms
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3.1 Introduction

Continuing with same notation as before, let f be a holomorphic cusp form of positive
weight k& on a congruence subgroup I' C SL(2,7Z), where k € Z U (Z + %) Denote
the Fourier expansion of f at oo by

f(z) = Z a(n)e(nz).

n>1

The individual coefficients a(n) have long been of interest since the coefficients con-
tain interesting arithmetic data. For example, the major insight leading to the
resolution of Fermat’s Last Theorem involved showing that for an elliptic curve F
there exists a corresponding modular form fr whose coefficients (at prime indices)
satisfy

a(lp) =p+1—#E(F,),

or rather that the a(p) counted the number of points on the elliptic curve over finite
fields.

The first cusp form to be studied in depth was the Delta Function (as described
in Chapter 1), whose coefficients are the Ramanujan 7 function,

A(z) = 7(n)e(n2).

n>1
Ramanujan conjectured that the coefficients of A should satisfy the bound
[7(n)] < d(n)n’>,

where d(n) is the number of positive divisors of n. This conjecture initiated an
exploration that included a much wider set of objects than Ramanujan could have
dreamt of.

Ramanujan’s Conjecture has been extended to include all modular and automor-
phic forms. For a cusp form f of weight k& in GL(2), the conjecture states that

aln) < n'z *.

This is now known as the Ramanujan-Petersson conjecture, and it is now known to
be true for full integral weight k& holomorphic cusp forms on GL(2) as a consequence
of Deligne’s proof of the Weil Conjecture [Del74].

It is an interesting coincidence that Hardy and Littlewood were investigating
averaged estimates for the Gauss Circle and Dirichlet Divisor problems when Ra-
manujan was arriving in England, thinking about the Delta function. It is easy
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to look at the first several 7 coefficients and believe that the sign of 7(n) changes
approximately uniformly random in n. Under this assumption, and assuming Ra-
manujan’s Conjecture that 7(n) < n%“, it is very natural to conjecture that the
summatory function of 7(n) satisfies the square-root cancellation phenomenon,

Z T(n) < Xztate
n<X

As described in Chapter 1, this is analogous to the error terms E(R) in the Gauss
Circle or Dirichlet Divisor Problems. We similarly expect the even better bound,

Z T(n) < Xztate
n<X

Although there is a clear qualitative connection with the Circle and Divisor problems,
it seems unlikely that this common thread was recognized by Hardy, Littlewood, or
Ramanujan at the time.

For our general cusp form f of weight k in GL(2), we expect an analogous con-
jecture to hold, which we refer to as the “Classical Conjecture.”

Conjecture 3.1.1 (Classical Conjecture). Let f(z) = > -, a(n)e(nz) be a holo-
morphic cusp form of weight k on GL(2), where k € ZU (Z+ %) and k > 1. Then

Sg(n) = Z a(n) < X7t

n<X

In a seminal pair of works, Chandrasekharan and Narasimhan [CN62, CN64]
showed that the Classical Conjecture is true on average by showing that

D18 = CXME 4 B(X)
n<X
where B(X) is an error term satisfying
O(X*log” X)
B(X) = {Q(Xk_}l (logloglogX)Q)

log X

and where C' is an explicitly known constant.

This should be thought of as a Classical Conjecture on average due to the fol-
lowing classical argument:

(Z|Sf(n)!>2 = (Z|Sf(n)y : 1)2

n<X n<X



34

<Y IS DS 1= X 318

n<X m<X n<X

< Xh1s

The Cauchy-Schwarz-Bunyakovsky inequality is used to pass from the first line to
the second, and the bound of Chandrasekharan and Narasimhan is used to pass from
the second to the third. Taking the square root of each side and dividing by X gives

1 —1,1
+ SIS < X,
n<X

which is precisely the statement that the Classical Conjecture holds on average.
Their result is described more completely in §3.2.4.

Building on this result, Hafner and Ivi¢ were able to show that for holomorphic
cusp forms of full integral weight on SL(2,Z), we know

Sp(n) < X7 F3.

The argument of Hafner and Ivié¢ only applies for holomorphic forms of full-integral
eight and of level one, but it is possible to provide some extension to their result
using their methodology.

In the rest of this chapter, we will examine a new method for examining the
behavior of S¢(n). We will be able to study a slightly more general object. Let
g =, b(n)e(nz) be another modular form of weight & and of the same level as
f. The fundamental idea is to study the Dirichlet series

D(S,Sf) = Z M

n>1 nete
St(n)S,(n
D(s, Sy x S,) = Z%
n>1
— St(n)S,(n
D(s,Sp x S,) = Z%
n>1

In the sequel, we show that these three Dirichlet series have meromorphic continu-
ation to C. In §3.5, we show how to analyze these Dirichlet series to prove results
concerning average sizes of the partial sums S¢(n).

Remark 3.1.2. Note that the notation used in this thesis is different than the
notation used in the series of papers [HKLDW17a, HKLDW17¢, HKLDW16]. In this
thesis, we adopt the convention that has risen amidst the representation theoretic
point of view on automorphic forms. Therefore L(s, f x f) in this thesis is the same
as L(s, f x f) in the papers. This difference is ultimately very minor, and does not
change any aspect of the analysis.
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3.2 Useful Tools and Notation Reference

For ease of reference, we give a notational reference and a brief description of some
of the tools necessary for the analysis.

3.2.1 The Rankin—Selberg L-function

The Rankin—Selberg convolution L-function is described in detail in [Gol06, Bum98],
but we summarize its construction and properties. Note that there is a choice of
convention concerning notation for conjugation. The more common convention is
changing due to influence from more general lines of inquiry.

Let f(z) = > a(n)e(nz) and g(z) = >_ b(n)e(nz) be modular forms of weight k
on a congruence subgroup I' C SI(2,7Z), where at least one is cuspidal. Let I'\'H
denote the upper half plane modulo the group action due to I'; and let (f, g) denote

the Petersson inner product
dxdy
)= [[ s
\H

The Rankin—Selberg L-function is given by the Dirichlet series

L(s, f xg) :=((2s) Z %>

n>1

which is absolutely convergent for Res > 1. This L-function has a meromorphic
continuation to all s € C via the identity
(4m)*+E1¢(2s)
[(s+k—1)

L(S7f X g) = <Im()kf§7E(7§)>’ (21)

where E(z,s) is the real-analytic Eisenstein series

E(z,s) = Z Im(yz)°.

YET o \I'

If, in (2.1), we replace fg with f1_,g, where T"; is the Hecke operator giving
the action
T F(x +iy) = F(—x + iy),

then one gets a meromorphic continuation of

L(s,f x g) = <<2s>2%~

n>1
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More details on the T Hecke operator can be found in the discussion leading up to
Theorem 3.12.6 of [Gol06]. As the meromorphic properties of both are determined
by the zeta function, Gamma function, and Eisenstein series, we see that complex
analytic arguments are very similar on either L(s, f x g) or L(s, f x g). We will
only carry out the argument for L(s, f x g), and describe any changes necessary to
perform the argument on the other.

These Rankin—Selberg L-functions are holomorphic except for, at most, a simple
pole at s = 1 with residue proportional to (f,g). When I' = SL(2,Z), there is the
functional equation

(2m) *T(s)D(s + k = 1)L(s, f x g) = Als, f x ) = A(1 =5, f x g),
coming from the functional equation of the completed Eisenstein series
7 °T(s)((2s)E(z,s) =: E*(z,5) = E*(2,1 — s).

There are analogous transformations for higher levels, but their formulation is a bit
more complicated due to the existence of other cusps.

3.2.2 Selberg spectral expansion

Let L?(I'\'H) denote the space of square integrable functions on I'\'H with respect
to the Petersson norm. There is a complete orthonormal system for the residual
and cuspidal spaces of I'\'H, which we denote by {u;(2) : j > 0}, consisting of the
constant function p(z) and infinitely many Maass cusp forms p;(z) for j > 1 with
associated eigenvalues i + tJQ» with respect to the hyperbolic Laplacian. Without
loss of generality, we assume that the i, are also simultaneous eigenfunctions of the
standard Hecke operators, as well as the T_; operator. Then for any f € L*(T\H),
we have the spectral decomposition of f given by

1) = S asi) + 3 3= [ U Buled + i) Balad +i0)

J

where a ranges of the cusps of I'\H. Throughout this thesis, we will refer to the first
sum as the discrete spectrum and the sums of integrals as the continuous spectrum.
The spectral decomposition as presented here is a consequence of Selberg’s Spectral
Theorem, as presented in Theorem 15.5 of [IK04].

To each Maass form p; is associated a type % +1t;, and these it; are expected to
satisfy Selberg’s Eigenvalue Conjecture, which says that all ¢; are real. In complete
generality, it is known that ¢; is either purely real or purely imaginary. Selberg’s
Eigenvalue Conjecture has been proved for many congruence subgroups, including
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SL(2,Z), but it is not known in general. We let ¢ = sup,;{|Im(t;)|} denote the best
known progress towards Selberg’s Eigenvalue Conjecture for I'. The current best

result for § in all congruence subgroups that 6 < &, due to Kim and Sarnak [KS03].

3.2.3 Decoupling integral transform

We will use an integral analogue of the binomial theorem, originally considered by
Barnes [Bar(8], also presented in 6.422(3) of [JZ07].

Lemma 3.2.1 (Barnes, 1908). If0 >~y > —Res and |argt| < 7, then

% T(—2)T(s + 2) dz = T(s)(1 +1)~".
T J(y)

This is a corollary to an integral representation of the beta function,

B(z,s):/ooo(m—z dv.

1+x)7ts x

which implies that

B(z,s — z) = /000 i _T_Zx)s % (2.2)

The right hand side is a Mellin transform, so (2.2) indicates that B(z,s — z) is
the Mellin transform of (1 + x)~° (with auxiliary variable z). Applying the Mellin
Inversion Theorem (as shown in [Tit86]) and the representation of the Beta function
in terms of Gamma functions, B(s,t) = I'(s)I'(t)/T'(s + t), we recover a proof of the
Lemma.

We will apply this integral transform to decouple m,n in (m +n)~* =m=*(1 +
2)7%. It is easy to check that an application of the lemma (followed by a change of
variables z — —z) gives

1 1 Fz)(s—2) 1

(n+m)s  2mi /., I'(s) ns=*m?

3.2.4 Chandrasekharan and Narasimhan

We will refer to a result of Chandrasekharan and Narasimhan through this thesis.
We combine [CN62, Theorem 4.1] and [CN64, Theorem 1] to state the following
theorem of theirs.
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Theorem 3.2.2 (Chandrasekharan and Narasimhan, 1962 and 1964). Let f and g
be objects with meromorphic Dirichlet series

Ls =32 s g =S M

ns ns
n>1 n>1

Suppose G(s) = Q° Hle D(ays + B;) is a product of Gamma factors with @ > 0 and
a; > 0. Define A = Zle ;. Let w and w' be numbers such that Y-, |b(n)]* <

X2 1og" X . Let
1 L
Q(X) = _,/—(S’f)xs ds,
2t Jo s
where C is a smooth closed contour enclosing all the singularities of the integrand.

Let q be the mazximum of the real parts of the singularities of L(s, f) and let r be the
mazximum order of a pole of L(s, f) with real part q. Suppose the functional equation

G(s)L(s, f) = e(f)G(0 = s)L(0 — 5, 9)

is satisfied for some |e(f)| =1 and 6 > 0. Then we have that

1

S4(X) = 3" a(n) = Q(X) + O(x -wr+2Aw=d~donse)

n<X

+O(XT a7 log(X)T_1)+O( > |a(n)\)

X<n<X!

for any n >0, and where X' = X + O(Xl’ﬁ’”). If all a(n) > 0, the final O-error
term above does not contribute.

Suppose further that A > 1 and that 2w — § — % < 0. Then

SIS (0) — Q)P = eXP 21+ O(X log" 2 X)

n<X

for a constant c that can be made explicit.

Thus from little more than a functional equation with understood Gamma factors,
one can produce nontrivial bounds on first and second moments.

3.3 Meromorphic Continuation

We will now produce the meromorphic continuations of D(s, S;) and D(s, Sy x Sy).
The meromorphic continuation of D(s, Sy x.S,) follows from applying the exact same
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methodology to T"_1¢g in place of g, so we only write down the corresponding results.
In this section, we explicitly show the results in the case when I' = SL(2,Z). For
higher level congruence subgroups, the same methodology will work. We remark on
this in §3.6.

Throughout this section, let f(z) = > a(n)e(nz) and g(z) = > b(n)e(nz) be
weight k cusp forms on SL(2,Z). Define Sy(n) := > . a(m) to be the partial sum
of the first n Fourier coefficients of f. Define S,(n) similarly.

We first describe the meromorphic continuation of D(s, Sy). The main ideas of
this continuation are very similar to those in the continuation of D(s, Sy x S,), but
the details are much simpler. We then produce the meromorphic continuation of
D(s, Sy x S,) in §3.3.2. We shall see that the main obstacle is understanding the
shifted convolution sum

a(n)b(n — h)
D T
n,h>1
We then use these meromorphic continuations to understand D(s, S; x S,) in the
next section.

3.3.1 Meromorphic continuation of D(s, Sy)

The meromorphic continuation of D(s, Sy) is very simple. The pattern of the proof
is similar to the pattern necessary for D(s, Sy x S,), so it is useful to be very clear.
The proof proceeds in two steps:

(i) Decompose the Dirichlet series into sums of Dirichlet series that are easier to
understand, and

(ii) Understand the reduced Dirichlet series by relating them to L-functions.

Proposition 3.3.1. With f and S¢(n) as defined above, the Dirichlet series associ-
ated to Sy(n) decomposes into

D(s,5p) = 2 g e L /(2) Lis— 2 f)(2)

k—1 .
s+55— 27
n>1 V2

(3.1)
valid for Res > 3. Here, L(s, f) denotes the standard L-function associated to f,

given by
3 a(n)
L(87 f) = 5+%’

n>1 T

normalized to have functional equation of the form s +— 1 — s.
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Proof. We directly manipulate the Dirichlet series.

St(n) a(n —m)

D(s, Sy) = E — T — E —_—
! o - gt e
m>0

In this last equality, we adopt the convention that a(n) = 0 for n < 0 to simplify
notation. Separate the m = 0 case and reindex the remaining sum with n — n +m

to get
a(n) a(n)
— + -

n>1 m,n>1 (n+m)*"

The first sum is exactly L(s, f). In the second sum, decouple (n + m)~* through
the use of the Mellin-Barnes transform detailed in §3.2.3. For v > 1 and Res
sufficiently large, the m sum can be collected into {(z) and the n sum can be collected
into L(s + %) Simplification completes the proof. ]

The meromorphic continuation of the L-function L(s, f) is well-understood. Note

that in
1 [(z)[(s + 51 — 2)

5= | Lls =2z f)¢(2)

dz,
2mi J ) L(s + 551

the integrand is meromorphic in both s and z, and has exponential decay in ver-
tical strips in Im 2z for any individual s. Therefore one can use the meromorphic
continuation of L(s, f) to understand that this integral is meromorphic for all s € C.

Note that it is also possible to shift the line of z integration arbitrarily far in the
negative direction, passing poles at z = 1,0, —1,... and picking up their residues.
Shifting the line of z integration to € for a small € > 0 passes exactly one pole, coming
from ((z) at z = 1, with residue

L(s—1,f) 1 P(z)0(s + 51 — 2)
D =1L _ L(s — dz.
(S’Sf) (S’f)+3+kgl—1+2ﬂ-z\/(€) (8 Z’f)C(Z> F(S+k_1) z
The first term is analytic, the third term is analytic in s for Res > € — %, and

k—1

5. However, from the

the middle term appears to have a simple pole at s = 1 —
functional equation equation of L(s, f),

k—1

A(s, f) == (2r) T 2D (s + B4 L(s, f) = eA(1 — s, f),

2
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we see that the residue L(—%31) is a trivial zero of the L-function, and s =1 — 1

2
is not a pole after all.

Further shifting the line of z integration to —M + € for small € > 0 passes (M)
further poles, coming from I'(z) at z = —j for 0 < 7 < M. The jth pole, located at
z=—7,0 <7 < M has residue

B . D+ 5 +) (1)

In each residue, the L-function is analytic, and all apparent poles of the Gamma
function in the numerator are cancelled by poles of the Gamma function in the
denominator. Therefore each residue is analytic in s.

For any integer M > 0, we therefore have that

e 1 T(z)D(s + 51 — 2)
D(s,S;) =L R — L(s— 2 dz.

The L-function and residues are analytic in s. The integral term is analytic in s for
Res > —% — M +e€. Since M is arbitrary, we see that D(s, Sy) is actually analytic
for all s € C. We record this observation as a corollary to the decomposition of
D (S, S f).

Corollary 3.3.2. The Dirichlet series D(s,Sy) has analytic continuation to the
whole complex plane, given by (3.1).

Remark 3.3.3. I note that if f is not cuspidal, then the decomposition and most
of the analysis of D(s, Sy) carries over verbatim, with one key difference: the value
L(—%) is no longer a trivial zero. Therefore it is possible to show in general that
D(s, S¢) is meromorphic in the plane with at most several simple poles with residues

given by special values of L(s, f).

This indicates a very strong parallel between the properties of L(s, f) and D(s, S¢).
But it should be noted that D(s, Sy) does not have a simple functional equation or
an Euler product.

3.3.2 Meromorphic continuation of D(s, S x S,)

The meromorphic continuation of D(s,S; x S,) is a bit involved, but the approach
is very similar to the approach for D(s,Sy). We proceed in three steps:

(i) Decompose D(s, Sy x S,) into sums of Dirichlet series that are easier to under-
stand,
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(ii) Related the reduced Dirichlet series to L-functions and convolution sums, and

(iii) Combine the analytic properties of the L-functions and convolution sums.

The first two steps are fundamentally the same as inD(s, Sf), except that convolution
sums are necessary in the analysis. As the meromorphic properties of convolution
sums are significantly more delicate, ascertaining the final analytic properties will
take much more work. The final step is deferred to §3.4.

Proposition 3.3.4. With f, g, S¢(n), and Sy(n) as defined above, the Dirichlet series
associated to Sy(n)Sy(n) decomposes into

D(5,8; x 5y = 3 Sr%()

= nstk—
_ E—
W £+ g [ W= s e PO s
for 1 <~ <Re(s—1). Here, W(s; f,q) denotes
O B3 ) .
W(87f>g) T Q(QS) —|—Z(S,O,f X g>7

L(s, f x g) denotes the Rankin—Selberg L-function as in 3.2.1, and Z(s,w, f X G)
denotes the symmetrized shifted convolution sum

Z a(n)b(n —h) + a(n — h)m

Z(s,w, f xg) = 1

n,h>1

Proof. Expand and recollect the partial sums Sy and S,.

— St(n)Sy(n 1 - .
D(s. S x 5 = 30 2 57 LS () Y 600
n>1 n>1 m=1 h=1

Separate the sums over m and h into the cases where m = h,m > h, and m < h. We
again adopt the convention that a(n) = 0 for n < 0 to simplify notation. Reorder
the sums, summing down from n instead of up to n, giving

IERST IR DD o) KIS
n>1 h=m>0 h>m>0 m>h>0

In the first sum, take A = m. In the second sum, when A > m, we let h = m + ¢ and
then sum over m and ¢. Similarly in the third sum, when m > h, we let m = h + /.
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Together, this yields

—i—Za(n—m)b(n—m—ﬁ)+Za(n—m—€)b(n—m)).

In each sum, the cases when m = 0 are distinguished. Altogether, these con-

tribute Lis. f x3)
= S, Xg
W<8>fag) - <(2S)

Within W (s; f,g), one should think of L(s, f x §)((2s)~! as the diagonal part of the
double summation, while Z(s, 0, f x g) contains the off-diagonal, written as the sum
of the above-diagonal and below-diagonal parts of the double summation.

+ Z(s,0,f x ).

Reindexing by changing n — n + m, the remaining sums with m > 1 can be
rewritten as

1 77 N JE—
> e (a(n>b<n) +Y a(n)b(n —0) + Y a(n— €)b(n)).

m,n>1 >1 >1

Decouple (n + m)~T%=1 through the use of the Mellin-Barnes transform detailed
in §3.2.3. Restricting to v > 1 and Re s sufficiently large, we can collect the m sum
into ((z) and the n sum can be colleced into W (s; f, g). Simplification completes the
proof. O]

As in the case of D(s, S}), the individual pieces L(s, f xg)¢(2s)~! and Z(s,w, f X
g) are known to have meromorphic continuation to the complex plane. The Rankin—
Selberg L-function is classical, and its meromorphic continuation is explained in §3.2.1.
The meromorphic properties of Z(s,w, f x §) are extensively studied in [HHR13].
One should expect to be able to perform an analysis similar to the analysis for
D(s, S¢) to study D(s,S; x S,), perhaps by shifting the line of z integration and
analyzing residue terms.

However, the shifted sums Z(s,0, f x g) show miraculous cancellation with the
diagonal L(s, f x §)((2s)7! that does not occur in Z(s,w, f x g) for general w. We
group W (s; f,q) into a single object and study its analytic properties in the next
section.
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3.4 Analytic Behavior of D(s, Sy x S,)

In this section, we will understand the meromorphic continuation of D(s, Sy x S_g)
by studying the analytic properties of W (s; f,g). Although we work in level 1, the
methodology in this section generalizes to arbitrary level and half-integral weight
forms. Therefore, we will use ¢ = sup,{|Im(t;)|} to denote progress towards Selberg’s
Eigenvalue Conjecture (as described in §3.2.2) even though it is known that § = 0
in the level 1 case.

We first produce a spectral expansion for the off-diagonal component, the sym-
metrized shifted double Dirichlet series

Do, f xg)i= 30 3 2mbm =0 alm — Om),

m>1 ¢>1

We then use this to understand the analytic behavior of W (s; f,g) and, from this,
the analytic behavior of D(s, Sy x ).

Spectral expansion

For each integer h > 1, define the weight zero Poincaré series on T,
Pu(zys) = S Im(yz)e(hy),
YET o \I'

defined initially for Re(s) sufficiently large, but with meromorphic continuation to
all s € C.

Recall Ty from §3.2.1. Let V;5(z) := v*(fg + T-1(fg)). Note that V;5(z) €
L*(T'\'H), so the Petersson inner product (V;z, Py(-,5)) converges. By expanding
this inner product, we get

Vrgs Pul-5)) =

where we define D3 to have analogous notation as in [HHR13],

Dy g(s;h) = Z a(n)b(n — h) + a(n — h)b(n)

nstk—1 ?

n>1

which converges absolutely for Re s sufficiently positive. Dividing by A" and sum-
ming over h > 1 recovers Z(s,w, f X g),

- . Dyg(s;ih) (4m)stht (Vig: D)
Z(s,w, fxg) =Y R v > T (4.1)
n,h>1 h>1
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for Re s and Re w sufficiently positive.

We will obtain a meromorphic continuation of Z(s, w, f X g) by using the spectral
expansion of the Poincaré series and substituting it into (4.1). Let {g;} be an
orthonormal basis of Maass eigenforms with associated types % +it; for L*(T\H) as
in §3.2.2, each with Fourier expansion

ij y Kzt 2’/T|7’L‘y) 27rin:c‘
n#0

The spectral expansion of the Poincaré series is given by

Py(z,s) = Z(Ph('a $), 1) i (%)
. (4.2)
+/ <ph(., s),E(-, 5 +it))E(z, 1 +it) dt.

We shall refer to the above sum and integral as the discrete and continuous spectrum,
respectively, similar to the convention in §3.2.2.

The inner product of p; against the Poincaré series gives

PR/ D(s — 4 +it)I(s = 3 — it)
(4mh)*~ I'(s) '

<Ph(‘,3),/lj> = (43)

D=

Remark 3.4.1. In the computation of this inner product and the inner product of
the Eisenstein series against the Poincaré series, we use formula [JZ07, §6.621(3)] to
evaluate the final integrals.

Let E(z,w) be the Eisenstein series on SL(2,7Z), given by

E(z,w) = Z (Im~vz)°.

Y€\ SL(2,2)
Then E(z,w) has Fourier expansion (as in [Gol06, Chapter 3])
E(z,w) =y + p(w)y' ™" (4.4)

27r“’\/§ w,% TIMX
+ W%hﬂ o1-2u(|m|) K, 1 (27[mly)e ?

where
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The Petersson inner product of the Poincaré series (h > 1) against the Eisenstein
series F(z,w) is given by

) Bl ) = 2T P20y o (h) T(s + W — 1)T'(s — )
) B ) = o Gy e )

provided that Res > % + |Rew — %| For t real, w = % +1t, and Res > %, we can

specialize (4.5) to

_ 2ymoou(h) T(s—5+it)[(s — 5 —it)
I(s)(4wh)*~2 hit¢*(1 — 2it) ’

<Ph('73)’E('7% +it)> (46)

in which (*(2s) := 77°I'(s)((2s) denotes the completed zeta function.

Now that we have computed the inner products of the Eisenstein series and Maass
forms with the Poincaré series, we are ready to analyze the spectral expansion. After
substituting (4.3) into the discrete part of (4.2), the discrete spectrum takes the form

ﬁ I\ 1 i s — 1 — it iz
M;pj(h)r(s— 3 Hit)D(s — 5 —ity)p;(2)

and is analytic in s in the right half-plane Re s > % + 0. After inserting (4.6), the
continuous spectrum takes the form

VT > i (h) I'(s — % +it)l'(s — % —it)
or(4mh)2 J oo N C*(1 — 2it)T'(s)

E(z, 5 +1t)dt,

which is analytic in s for Res > % and has apparent poles when Re s = %

Substiting this spectral expansion into (4.1) and summing over h > 1 recovers
an expression for all of Z(s,w, f X §). Recognizing the Dirichlet series (as described
in [Gol06], for instance)

(h
% = L(s+w — 3, 1)
h>1
U1—2w(h) o B . .
ZW - L(S,E(-,w)) = C(5+w — §)C(S —w + 5),

we are able to execute the h sum completely. Assembling it all together, we have
proved the following proposition.

Proposition 3.4.2. For f, g weight k forms on SLy(Z), the shifted convolution sum
Z(s,w, f xg) can be expressed as

a(m)b(m — h) + a(m — h)b(m)
mstk—1pw

Z(s,w, fxg) =Y

m=1
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(47T>k . 1
=" Zﬂj(l)G(Sth)L(S +w — 5, 15)Vrgs 1) (4.7)
(47T)k 1 =
+ y /(0) G(s,2)Z2(s,w,2)(Vyg, E(-, 5 — 7)) dz, (4.8)

when Re(s + w) > %, where G(s,z) and Z(s,w, z) are the collected T and ¢ factors

of the discrete and continuous spectra,
D(s—3+2)(s—1-2)
L(s)I'(s+k—1)
((s+w—3+2)((s+w—3—2)
(14 22) '
Remark 3.4.3. Let’s verify that this spectral expansion converges. Recall Stirling’s
approximation: for x,y € R,

G(s,z) =

Z(s,w,z) =

vz +iy) ~ (L + |y|)* ze 2l
as y — oo with x bounded. For vertical strips in s and z,
G(S, Z) ~ P(S7 2)6—%(2max(|s"|z‘)_2|$‘)7

where P(s, z) has at most polynomial growth in s and z. When k is a full-integer,
Watson’s triple product formula (given in Theorem 3 of [Wat08]) shows that

pi()(fglm(-)" ), and  p;(1)(T1(fg) Im(-)", 757)

has at most polynomial growth in |¢;|. When £ is a half-integer, Kiral’s bound (given
in Proposition 13 of [K15]) also proves polynomial growth, albeit of a higher degree.
Through direct computation with the associated Rankin—Selberg L-function, the
same can be said about

<Vf7§7E('7 % + Z>>/C*(1 + 22)'

Both (4.7) and (4.8) converge uniformly on vertical strips in ¢; and have at most
polynomial growth in s.

We will now specialize to w = 0 and analyze the meromorphic properties of
Z(s,0, f x g). This very naturally breaks into two parts: the contribution from the
discrete spectrum (in line (4.7)) and the contribution from the continuous spectrum
(in line (4.8)).

Meromorphic continuation of Z(s,0, f x g): discrete spectrum

Examination of line (4.7), the contribution from the discrete spectrum, reveals that
the poles come only from G(s, it;). There are apparent poles when s = %:I:itj —n for



48
n € Z>q. Interestingly, the first set of apparent poles at s = % + 1t; do not actually
occur.

Lemma 3.4.4. For even Maass forms p;, we have L(—2n=it;, p1;) = 0 forn € Zsy.

Proof. The completed L-function associated to a Maass form p; is given by

Ajls) = T (L) T (S50 ) Lis, ) = (-UA, (1 —5), (49)

as in [Gol06, Sec 3.13], where € = 0 if the Maass form y; is even and 1 if it is odd.
In the case of an even Maass form, the functional equation is of shape

Aj(s) = n=°T (%) r (—Tt) L(s, 1) = Aj(1 — 5).

The completed L-function is entire. Thus L(—2n =+ it;, pt;) must be trivial zeroes to
cancel the apparent poles at s = —2n % it; from the Gamma functions. O

It turns out that there are no poles appearing from odd Maass forms due to the
symmetry of the above-diagonal and below-diagonal terms in Vy 3.

Lemma 3.4.5. Suppose f and g are weight k cusp forms, as above. For odd Maass
forms p;, we have (Vyg, 1) = 0.

Proof. Recall that V;, := y*(fg + T_1(fg)), so clearly T_;V;5 = V;5. Recall also
that T_yp; = —p; for odd Maass forms p; (in fact, this is the defining characteristic
of an odd Maass form). Since T"; is a self-adjoint operator with respect to the
Petersson inner product we have that

Vigitj) = (T1Vsg, 15) = Vig, To1py) = —Vig, 1)

Thus (V;, 11;) = 0. 0

In the special case when f = g, it is possible to show that odd Maass forms p;
do not contribute poles in either the above-diagonal or below-diagonal terms in V; 7.
We record this observation as a corollary to the above lines of thought, even though
it is not necessary for the applications in this thesis.

Corollary. Suppose f is a full-integral weight cuspidal Hecke eigenform, not neces-
sarily with real coefficients. Then for odd Maass forms p;, we have (| f|*> Im(-)*, u;) =
0. Similarly, we have {f?Tm(-)*, u;) = 0.
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Proof. We sketch the proof. From Watson’s well-known triple product formula [Wat08],
we have .

L(%? I x fxpy)
(1, £, Ad)L(1, f, Ad) L(1, uj, Ad)

up to multiplication by a nonzero constant coming from the missing Gamma factors.
The L-functions in the denominator are all nonzero, and the numerator factors as

L(%, [ x [ x ) = L(3, Ad*f x p13) L(5, uy)-

Since p; is odd, L(%, ;) = 0 by the functional equation for odd Maass forms, given
in (4.9).

(17 m () ) ~ =

Applying Watson’s triple product to (f*Im(-)*, ;) yields the numerator
L(3, Sym® f x ;) L(3, 115),

which is zero for the same reason. O

Lemma 3.4.5 guarantees that the only Maass forms appearing in line (4.7) are
even. The first set of apparent poles from even Maass forms appear at s = %i—itj and
occur as simple poles of the Gamma functions in the numerator of G(s,t;). They
come multiplied by the value of L(it;, it;), which by Lemma 3.4.4 is zero.

In summary, D(s, Sf x S,;) has no poles at s = % +it;. The next set of apparent
poles are at s = —% =+ it;, appearing at the next set of simple poles of the Gamma
functions in the numerator. Unlike the previous poles, these do not coincide with
trivial zeroes of the L-function. We have poles of the discrete spectrum at s =
—3 tit;.

Meromorphic continuation of Z(s,0, f X §): continuous spectrum

Examination of the line (4.8), the contribution from the continuous spectrum, is
substantially more involved than the discrete spectrum. It is here where the most
remarkable cancellation occurs. For ease of reference, we repeat this line, the part
we call the continuous spectrum:

(4m)*

47

/(0) G(s,2)Z(s,w,2)(Vyg, E(, 5 — %)) dz (4.8)

where G(s, z) and Z(s,w, z) are the collected I" and ¢ factors

(s—3+2)(s—1-2)

((s+w—3+2)C(s+w—3—2)
T(s)['(s +k— 1) '

C*(1422)

G(s,z) = , Z(s,w,2) =
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The rightmost pole seems to occur from the pair of zeta functions in the numerator,
occurring when s + w — % + 2z = 1. We must disentangle s and w from z in order to
understand these poles.

Line (4.8) is analytic for Re(s +w) > 3, Res > 1. As we will shortly set w = 0,
we treat the boundary Re(s 4+ w) > 2. For s with Res € (2 — Rew, 3 — Rew + ¢)
for some very small ¢, we want to shift the contour of integration, avoiding poles
coming from the (*(1 — 2z) appearing in the denominator of the Fourier expansion
of E(-, 2 + %) (described in (4.4)).

We shift the z-contour to the right while staying within the zero-free region of
¢(1—2z). By an abuse of notation, we denote this shift here by Re z = € and let € in
this context actually refer to the real value of the z-contour at the relevant imaginary
value. This argument can be made completely rigorous, cf. [HHR13, p. 481-483].

We perform this shift in order to guarantee that the two poles in z coming from
¢ (s—l—w—%:i:z), occurring at +z = %—s—w, have different real parts; simultaneously,
we pass the pole with more positive real part, occurring at z = s + w — % from
((s 4w — % — z). By the residue theorem,

(47T)k/ _
i Jo, G(s,2)Z(s,w0,2)(Vyg, E) dz
k k
— (4m)® GZ(Vig, E) dz — (dm)” Res  GZ(Vyg, E),

47 (e) z=st+w—15
where the above residue is found to be
C(2s+2w—2)I'2s +w—2)'(1 —w)

T ottt E—) e BL2=s ).

The residue is analytic in s for Res € (1 — Re w,% — Rew + ¢€), and has an easily
understood meromorphic continuation to the whole plane. Notice also that the
shifted contour integral has no poles in s for Re s € (% — Rew —, % — Rew +¢€), so
we have found an analytic (not meromorphic!) continuation in s of Line (4.8) past
the first apparent pole along Re s = % — Rew.

For s with Res € (2 — Rew —¢,3 — Rew), we shift the contour of integration
back to Rez = 0. Since this passes a pole, we pick up a residue. But notice that
this is the residue at the other pole, % — s —w, coming from ((s + w — % + 2),

k
(izz /(6) G(s,w,2)Z(s,w,z)(Vsz, E)dz

4r)F 4r)F
_{4m Gz<vf,g,E>dz+(%) Res GZ(Vyg, E).

N 47 (0) z=5—s—w
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By using the functional equations of the Eisenstein series and zeta functions, one
can check that

Res GZ(Vy3, E) =— Res GZ(Viz E),

—3_s_ — _3
z=5—s—w z=st+w—735

so the two residues combine together, and have well-understood meromorphic con-
tinuations to the whole plane. The shifted integral has clear meromorphic continu-
ation until the next apparent poles at Res = % coming from the Gamma functions
I'(s — 3 & 2) in the integrand. Thus (4.8), originally defined for Re s > 2 — Rew, has
meromorphic continuation for % < Res < % — Rew given by

(4m)* k

—/ GZ(Vyg, E)dz+ (4m)" Res GZ(Vyg, E).

(0)

47T/L z=5—8—w

A very similar argument works to extend the meromorphic continuation in s of
the contour integral past the next apparent poles at Res = % from the Gamma
functions, leading to a meromorphic continuation in the region —% < Res < % given
by

k

(47r). / G(s,w,2)Z(s,w,z)(Vsg, E(-, 3 — Z))dz

4y (0)
+ (4m)F Res  G(s,w,2)Z(s,w,2)(Vyg, E(, :—72)) (4.10)
+ (4m)k Res G(s,w,2)Z(s,w,2)(Vsg, E(-, 5 — 2)). (4.11)

2

We iterate this argument, as in Section 4 of [HHR13, p. 481-483]. Somewhat
more specifically, when Re(s) approaches a negative half-integer, % —n, we can shift
the line of integration for z right past the pole due to G(s, z) at z = s — % + n, move
s left past the line Re(s) = § —n and then shift the line of integration for z left, back
to zero and over the pole at z = % — s —n. This gives meromorphic continuation
of (4.8) arbitrarily far to the left, accumulating an additional pair of residual terms
each time Re s passes a half-integer, and of a similar form to the first residual term

coming from G(s, z), appearing in (4.11).

We now specialize to w = 0. It is advantageous to codify some terminology for
these additional terms appearing in the meromorphic continuation of the integral,
i.e. terms like (4.10) and (4.11). We call these terms residual terms, as they come
from residues in the z variable; these are distinct from residues in s, as these residual
terms are functions in s. We also introduce a notation for these residual terms.
Substituting w = 0 into (4.10), we get the residual term

pa(s) = —Um)HC(2s —2)T(2s —2)

1) = Tt 4 k= D)o(as —g) e EL2 - 9), (4.12)
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This residual term is distinguished as the only residual term appearing as a residue
of the zeta functions.

The remaining residual terms all come from residues of Gamma functions, and
all have a similar form. For each m > 1, there is a residual term p%_m(s) appearing

for Res < g — m, appearing from an apparent pole of Gamma functions in G(s, z)

atz:%—m—s,givenby

. (s) :(—l)m*1(47r)k<’(1 —m)((2s+m —2)['(2s + m — 2) y
Piom T(m)0(s)0(s + k — 1)¢*(4 — 25 — 2m) (4.13)
<Vf,§, E(-,s+m—1)).

We summarize these computations with the following proposition.

Proposition 3.4.6. The continuous spectrum component of Z(s,0, f X §), as given
by (4.8) in Proposition 3.4.2, has meromorphic continuation to the complezx plane.
Further, the meromorphic continuation can be written explicitly as
(4m)*
47 (0)

G(S7 Z)Z(Sv 0, z)<Vf7§7 E(? % - Z))dZ + Zp%,m(s),

0<m< % —Res

where each residual term p%_m(s) is given by (4.12) (in the case that m = 0) or (4.13)

(when m > 1), and P3_m appears only when Re s < % —m.

m

3.4.1 Polar Analysis of Z(s,0, f X q)

Comparing the meromorphic continuations of the discrete spectrum component and
continuous spectrum component of Z(s,0, f x g) reveals that the rightmost pole
of Z(s,0, f x g) occurs in the first residual term, p%(s), appearing in (4.12). The
pole occurs at s = 1, caused by the Eisenstein series. By comparison, the discrete
spectrum component is analytic for Res > —% + it;, and the rest of the continuous
spectrum is analytic for Res > %

The residue at this pole is given by
(s) = Res (4m)k¢(25 — 2)I(25 — 2)
Cs=1 (*(2s = 2)T(s)T(s + k — 1)

Expand ¢*(2s — 2) = ((2s — 2)I'(s — 1)7'~* in the denominator, cancel the two zeta
functions, and use the Gamma duplication identity

(22)  D(z+ §)2%!
0@/«

s:lsp <Vf,§>E('72_§)>'

(NI
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with 2z = s — 1 to rewrite the residue as
F(S o %)228—3 7Ts_1 (47.[_)k
Via, E(,2—73
T(s)T(s +k — 1)< ra B 5))
)

T k
(lil(k?) Res(fg1m()", E(,5)).

Through the relationship between the Eisenstein series and the Rankin—Selberg L-

i
3

R_els ps(s) = Res

function (cf. §3.2.1), we can rewrite this as

L
Res ps (s) = —Res % (4.14)

The next pole of Z(s,0,f x g) also comes from the first residual term p3 (s),
occurring at s = % from the Gamma function in the numerator. Similar to the
computation of the residue at s = 1, we expand (*, cancel the two zeta functions,
and apply the Gamma duplication identity to recognize the residue as

1

R m) T T(s —5) _
&) = e T k1) o B2 = 5)

))-

Re

s=

n

p

ol
o

1 (4n)he
- %F(k—_%)Wf@E(w

N

We rewrite this as a special value of the Rankin—Selberg L-function,

s B = E 2D s

1 (k— 1) (4m)k+e
Resrs ) = or Ir T+ D)

-2

Returning to the rest of the meromorphic continuation of the continuous spec-
trum, let us examine the second residual term pg_l(s) = p%(s), which appears as
part of the meromorphic continuation only for Re s < % We simplify the expression

in (4.13), with m = 1,
_ (4m)F¢(0) ((2s—1) T'(2s—1) _
pyls) = T(s+k—1)C(2—2s) I(s) Vrg B(5)),

By using the functional equation for (*(2 — 2s), the Gamma duplication formula,
and recognizing the Eisenstein series inner product as a sum of two Rankin—Selberg

N|=

L-functions, this simplifies to
L(s, f xg)

We now recognize that p%(s) has poles at zeroes of ((2s).
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Remark 3.4.7. At first glance, it would appear that p1 (s) also has a pole at s = 1,
coming from the pole of the Rankin—Selberg convolution, and that this term therefore
contributes a pole to Z(s,0, f xg) at s = 1. However, the term P (s) does not appear

as part of the meromorphic continuation of Z(s,0, f X g) except when Res < %, SO
this term does not contribute a pole at s = 1.

More generally, for each m > 1, the residual term ps _ (), which appears for

Res < 2 —m, also contributes poles. As in (4.16), the Eisenstein series in p%_m(s)

introduces poles at s = 7 — m + 1 for each nontrivial zero ~ of ((s), in addition to
potential poles at negative integers and half-integers from the Gamma function in

the numerator.

Poles appearing in the discrete spectrum component do not exhibit the same
properties of cancellation, aside from those noted in Lemmas 3.4.4 and 3.4.5. Analy-
sis of the Gamma functions in the discrete component, in (4.7), shows that there are
potential simple poles at s = % +it; —n for n € Z>. The Lemmas 3.4.4 and 3.4.5
show that those poles occurring at s = %iz’tj —n with n even are cancelled by trivial
zeroes. Together, these indicate that there are potential poles at s = % +it; —n for
each odd, positive integer n.

3.4.2 Analytic Behavior of W (s; f,q)

Recall that Lis. f x3)
=y LS, T Xg
W(S,f,g) - C(?S)

As noted in (4.14), the leading pole of L(s, f x g)¢(2s)~! perfectly cancels with the
leading pole of Z(s,0, f x g). Therefore W (s, f,g) is analytic for Res > 1 and has
a pole at s = %, identified in (4.15).

+ Z(s,0,f x7g).

Further, the second residual term, pi (s), was shown to be exactly —L(s, f X

9)¢(2s)7! in (4.16), and appears for Res < 3. Therefore the Rankin-Selberg L-
function L(s, f x g)((2s)~! perfectly cancels with p%(s) for Res < 1. For Res < 2,

the analytic behavior of W (s; f,g) is determined entirely by the analytic behavior of
Z(s,0, f x g) (and omitting P (s)).

Therefore W (s; f,g) has meromorphic continuation to C. For Res > —%, the
only possible poles of W (s; f,g) are at s = %, coming from (4.15), and those at
5= —% + it; coming from exceptional eigenvalues of the discrete spectrum. (There
are no exceptional eigenvalues on SL(2,7Z)). Collecting the analytic data, we have

proved the following.
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Theorem 3.4.8. Let f, g be two holomorphic cusp forms on SL(2,7). Maintaining
the same notation as above, the function W (s; f,g) has a meromorphic continuation
to C given by the Rankin—Selberg L-function (2.1) and spectral decomposition in
Proposition 3.4.2, with potential poles at s with Re s < % and s € ZU(Z+ %) UG u3,
where 3 denotes the set of shifted zeta-zeroes {—1+3 —n:n € Zxo}, and & denotes
the set of shifted discrete types {—% tit; —n:n € Zso,n odd }.

The leading pole is at s = % and

ResW(s; f,q) =

1
$=3

3.4.3 Complete Meromorphic Continuation of D(s, Sy x ?Q)

With Theorem 3.4.8 and the decomposition from Proposition 3.3.4, we can quickly
give the meromorphic continuation of the Dirichlet series D(s, Sfx.S,). In particular,
by Proposition 3.3.4, we know that

IF()(s—2z+k—1)
[(s+k—1)

D(S,SfXS_g):W(S;f,§)+%m/()w(s_z;fvg)C(z) dz,
o

where initially Res is large and v € (1,Re(s) — 1). Notice that W(s; f,g) can also
be written as a single Dirichlet series as

W(s;f@):%w(s,o,fxﬁ)
_ Z a(n)b(n) + a(n)b(n — h) + a(n — h)b(n)
a(n — h)b(n) — a(n)b(n)
—Z +7§8+k1)(> (n)b(n)
Sy(n)b(n) w(n
S SIS SO 5wl

We denote the nth coefficient of this Dirichlet series of w(n). As a(n) < n'z
and S¢(n) < n"z t3, we know that w(n) < n*~175<. Thus W (s; f,g) converges
absolutely for Res > %.

Consider D(s, Sy x S,) for Res > 4 and « = 2 initially, so that both W (s; f,7)
and W(s — z; f,g) are absolutely convergent. Shifting the line of z integration to
—M — % for some positive integer M passes several poles occurring when z = 1 (from
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((2)) or z = —j with j € Z>¢ (from I'(z)). Notice that in this region, W (s — z; f,q)
converges absolutely, ((z) has at most polynomial growth in vertical strips, and the
Gamma functions have exponential decay for any fixed s. By Cauchy’s Theorem, we
have

D(s, Sy x Sy) =
S L T(E(s— 2tk 1)
=W(s; f,9) + _A%SIE{EJS W(s —z f,9)¢(2) T(s1 k—1)
1 . . F(Z)F(S —z+ k— 1)
4_% (_M_%)W(s—% [.9)¢(2) T(s+k—1) dz

T(s+j+k—1)

W =1:£.9) | §~ (1

= W(s; f.9) + o — 2. i W(s+j; £,9)C(=7) T(s+k—1)
1 L IF()(s—z+k—1)
_|_% (_M_%)W(S—Z, [,9)¢(2) T(s+k—1) dz.

Each of the residues gives an expression containing W (s; f, ) with clear meromorphic
continuation to the plane. The remaining shifted integral contains W (s — z; f,g) in
its integrand, with Rez = —M — % Therefore Res — z = Res + M + %, and
so W(s — z; f,g) is absolutely convergent for Res > —M + g As ((z) has only
polynomial growth and I'(2)I'(s — 2 + k& — 1) has exponential decay in vertical strips,
we see that the integral represents an analytic function of s for Res > —M + g
Therefore the entire right hand side has meromorphic continuation to the region
Res > —M + g As M is arbitrary, we have proved the following, which we record

as a corollary to Theorem 3.4.8.

Corollary 3.4.9. The Dirichlet series D(s, Sy x S,) has meromorphic continuation
to the entire complex plane.

Remark 3.4.10. Very similar work gives the meromorphic continuation for D(s, Sy x
S_g), mainly replacing g with T_,¢ in the above formulation. This distinction only
matters at higher levels when f and g have nontrivial nebentypus, and the spectral
expansion is modified accordingly.

Analysis of the exact nature of the poles of D(s, S;xS,) can be performed directly
on this presentation of the meromorphic continuation. In many cases, the leading
behavior of integral transforms on D(s, Sy x S,) will come from W (s — 1; f,g)/(s +
k — 2), as this term contains the largest negative shift in s. For later reference, it
will be useful to view D(s, Sy x S,) in this form for clear arithmetic application. We
codify this in the following lemma.
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Lemma 3.4.11.

Wis—1:1.9)
s+k—2
M j '

1

o TE(s—z+k—1)
+% s Wi(s =2z f,9)¢(2) T(s+k—1)

dz.

3.5 Second-Moment Analysis

It is now necessary to estimate the growth of D(s, Sy x S;) and to use the analytic
properties described above to study the sizes of sums of coefficients of cusp forms. It
will be necessary to understand the size of growth of D(s, S x S,), but it is relatively
straightforward to see that D(s, Sy X S_g) has polynomial growth in vertical strips.

Lemma 3.5.1. For 0 < Res < ¢’ and s uniformly away from poles, there exists
some A such that o
D(s, S x S,) < |Im s|.

Therefore D(s, Sy x S,) is of polynomial growth in vertical strips.

Proof. From Lemma 3.4.11 it is only necessary to study the growth properties of
W (s; f,g) and the Mellin-Barnes integral transform of W (s; f, q).

We first handle W (s; f,g). The diagonal component of W (s; f,q) is just the
Rankin—Selberg L-function L(s, f x §)((2s)~!, which has polynomial growth in ver-
tical strips as a consequence of the Phragmén-Lindel6f convexity principle and the
functional equation.

As noted in Remark 3.4.3, the discrete spectrum and integral term in the con-
tinuous spectrum each have polynomial growth in vertical strips. It remains to
consider the possible contribution from the residual terms ps (s) and ps _m(8). These
each consist of a product of zeta functions, Gamma functions, and Rankin—Selberg
L-functions, and a quick analysis through Stirling’s approximation shows that the
exponential contributions from the Gamma functions all perfectly cancel. Therefore
these are also of polynomial growth.

We now handle the Mellin-Barnes transform of W (s; f,g). We actually prove a
slightly more general result.
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Let F'(s) be a function of polynomial growth in |Im s| in vertical strips containing
o. Then the function

I O

. dz
270 J () I'(s)

has at most polynomial growth in |Im s|. Indeed, through Stirling’s Approximation,
the integrand is bounded by

[Tm s|*|Tm(s — 2)|Z|Im 2| exp ( — g(]lmz| + [Im(s — 2)| — |Ims]>)

Therefore, for |Imz| > |Ims|, the integrand has exponential decay and converges
rapidly. Thus the integral is essentially of an integrand of polynomial growth along
an interval of length 2|Im s|, leading to an overall polynomial bound in [Ims|. O

This is already sufficient for many applications. Consider the integral transform

L D(s,S; x S,)X°T(s)ds = Z Me‘”/){, (5.1)

; k—1
271 (o) 1 n

as described in §2.3. Initially take o large enough to be in the domain of absolute
convergence of D(s, Sy x S,), say o > 4.

Through Lemma 3.4.11, we rewrite (5.1) as

1 _
i [, (vera+ FEEL

_ )X‘T(s)ds
2mi 2

D(2)T(s — 24k — 1) (52)

: g *T'(s)ds
+ (27Ti)2 /(4) /(1+6)W(S—Z, f;g)C<Z) F(S+/€— 1) dzX F( )d .

From the proof and statement of Theorem 3.4.8, we see that W (s; f,g) is analytic
in Res > —% except for poles at s = % and at s = —% +1t;. Therefore when we shift
lines of s-integration in (5.2) to % + 2¢ passes a pole at s = % from W(s —1; f,9),
and otherwise no poles.

Remark 3.5.2. For general level, we shift lines of s-integration to % + 60 + 2¢, where
0 < 6—74 is the best-known progress towards Selberg’s Eigenvalue Conjecture, as noted
above.

By Lemma 3.5.1, this shift is justified and the resulting integral converges abso-
lutely. Therefore

S¢(n)Sy(n) _, 3 ES .
ST o _x 0, x

n>1

We can evaluate the residue C' using Theorem 3.4.8. Note that the same analysis
holds on D(s, Sy x S,) as well. In total, we have proved the following theorem.
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Theorem 3.5.3. Suppose f and g are weight k holomorphic cusp forms on SL(2,7Z).
For any e > 0,

> SO o 03 0y, (x5

k—1
n>1
SH)S,(0) iy s e
Z - nk—f e X =X+ OJ%C/,G(XZJr )
n>1
where ; 5 3 ; 5
(@) w0

As an immediate corollary, we have the following smoothed analogue of the Clas-
sical Conjecture.

Corollary 3.5.4.

2
Z ’Sf<n)‘ 6—n/X _ C«X% + Oﬁe(X%—I—e),

nk—1

where C' is the special value of L(2, f x F)T(2)(¢(3)47%)~" as above.

3.6 A General Cancellation Principle

While the techniques and methodology employed so far should work for general
weight and level, it is not immediately obvious that that the miraculous cancellation
that occurs in the level 1 case should always occur. In particular, it is not clear that
the continuous spectrum of Z(s, 0, f xg) will always perfectly cancel both the leading
pole and potentially infinitely many poles from the zeta zeroes of L(s, f x ¢)¢(2s)7L.

In the case when f = g are the same cusp form, we can compare our methodology
with the results of Chandrasekharan and Narasimhan to show that the leading polar
cancellation does always occur. A more detailed analysis using the same methodology
as the rest of this chapter would likely be able to show general cancellation.

Remark 3.6.1. In Section 6 of the soon-to-be-published paper [HKLDW17a], my
collaborators and I explicitly show that this cancellation continues to hold for cusp
forms f and g on T'o(N) when N is square-free. This is much stronger than what
is showed in the rest of this section concerning general cancellation between the
diagonal and off-diagonal sums corresponding to f x f.
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Suppose f(z) = Y a(n)e(nz) is a cusp form on Iy (N) and of weight k € ZU(Z+3)
with k& > 2. Theorem 1 of [CN64] gives that

< Z IS oxes 4 O(log? X). (6.1)

nk: 1
n<X

Performing the decomposition from Proposition 3.3.4 leads us to again study
Z(s,0, f x f) and W (s; f, f). The Rankin-Selberg convolution L(s, f x f)/((2s) has
a pole at s = 1. This pole must cancel with poles from Z(s,0, f x ?), as otherwise
the methodology of this chapter contradicts (6.1). Stated differently, we must have
that the leading contribution of the diagonal term cancels perfectly with a leading
contribution from the off-diagonal,

a(n)a(n — h) + a(n)a(n — h)
s 1 Z n5+k 1 o = nstk—1 :
n>1 n,th

We investigate this cancellation further by sketching the arguments of §3.4 and §3.5
in greater generality.

The spectral decomposition corresponding to Proposition 3.4.2 is more compli-
cated since we must now use the Selberg Poincaré series on I'g(V)

Py(z,s) = Z Im(yz)’e(hy - 2).
'YEFOO\FO(N)

The spectral decomposition of P, will involve Eisenstein series associated to each
cusp a of I'y(N). These Eisenstein series have expansions

Ey(z,w) = 0ay” + a0, 0)y" ™ + > @alm, w)Wy(|ml2),
m#0

where 0, = 1 if a = oo and is 0 otherwise,
I'(w— 1) 9w
90(07 U)) = \/ET’UJ)Q XC: ¢ ? 50(07 07 C)
plmw) = Festml™! Do S(0,mic)
are generalized Whittaker-Fourier coefficients,
Wu(2) = 2VyK,_1(2my)e(z)
is a Whittaker function, K, (z) is a K-Bessel function, and

Sa(m,n;c) = Z e (mg + n%)

(% 1)€ETac\0a 'To(N)/Too
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is a Kloosterman sum associated to double cosets of I'o(N) with

T, — <(1 ’f) e Z> C SL(2).

This expansion is given in Theorem 3.4 of [Iwa02].

Letting p; be an orthonormal basis of the residual and cuspidal spaces, we may
expand P(z,s) by the Spectral Theorem (as presented in Theorem 15.5 of [IK04])
to get

Py(z,s) = Z(Ph('73),/~bj>l~bj<z)

2 4r R<Ph(" 5), Ea(+, 5 4 it)) Ea(2, 5 + it) dt. (6.2)

This is more complicated than the SLy(Z) spectral expansion in (4.2) for two major
reasons: we are summing over cusps and the Kloosterman sums within the Eisenstein
series are trickier to handle. Continuing as before, we try to understand the shifted
convolution sum

(4r)> (/[ Im(-)", Py)
L(s+k—1) hw

h>1

by substituting the spectral expansion for P,(z,s) and producing a meromorphic
continuation.

The analysis of the discrete spectrum is almost exactly the same: it is analytic for
Res > —% +6. The only new facet is understanding the continuous spectrum compo-

nent corresponding to (6.2). We expect that the continuous spectrum of Z(s, 0, f x f)
has leading poles that perfectly cancel the leading pole of L(s, f x f)((2s)7 .

Using analogous methods to those in Section 3.4, we compute the continuous
spectrum of Z(s,0, f x f) to get

2 r(i:— 1) &~ 4mi / SON( PR, Eq(-, 1)) dt

h>1

(0, hye)  mait
= (S T k’ — 1 Z/ ( hs—i—ztcl 24t F( Zt)) X

h,c>1

l\')

x [(s — 2 +it)D(s — 3 —it)(| f? Im(-)", Ea(-, 3 +it)) dt.

We’ve placed parentheses around the arithmetic part, including the Kloosterman
sums and factors for completing a zeta function that appears within the Kloosterman
sums.
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The arithmetic part of the Eisenstein series are classically-studied L-functions,
and each satisfies analogous analytic properties to the function denoted Z(s, 0, z) in
§3.4. We summarize the results of this section with the following theorem.

Theorem 3.6.2. Let f be a weight k > 2 cusp form on I'o(N). Then

a(n)a(n — h) a(n)a(n — h)
Res Z ns+k 1 - -1 Res nsth—1
n>1 n,th n,h>1

or equivalently

L L fxf)

2 R 29)

“Res Y i (Pa(-, ), Ea(, 2+ it) (| Tm()*, Ba-, 3 + i0)) dt

s=1 R

(0, h;¢) 2t
= Res
A [(s+ k: - 1 Z/_ < hs*'”c1 2T (% — t))

h,c>1

xF@—§+uW@—§—ﬁMﬂ%mQ,&@§+d»ﬁ
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In this chapter, we highlight some applications of the Dirichlet series D(s, Sy x S,)
and D(s, Sy x S;). We begin with completed applications, summarizing the results
and methodology. Towards the end of the chapter, we highlight ongoing and future
work.

Reacknowledgements to my Collaborators

Each of the applications in this chapter were carried out (or are being
carried out) with Alex Walker, Chan leong Kuan, and Tom Hulse, each
of whom are my academic brothers, collaborators, and friends.

4.1 Applications

The Dirichlet series D(s, Sy x S;) and D(s, Sy x S,) present a new avenue for in-
vestigating the behavior of Sy, S§(n)Sy(n), and related objects. As Sy is analogous
to the error term in the Gauss Circle Problem (cf. Chapter 1), it is perhaps most
natural to ask about the sizes of S¢(n).

Long Sums

One result of this form was presented in §3, in Theorem 3.5.3 giving smoothed
averages for S;(n)S,(n) and, if f = g, smoothed averages for |S;(n)|?. This theorem
was proved completely for f and g on level 1.

In [HKLDW17a], my collaborators and I analyze further smoothed asymptotics
for S;(n)S,(n) for forms f and g on I'y(N) for N squarefree, proving analogous
results to Theorem 3.5.3 for forms even of half-integral weight. When f = g, this is
a generalized smoothed analogue to the result of Cramér [Cra22| giving that

15 —sa= s o0x
— Tg(n)—mf‘ dt = X2 + O(X1+e),
X 0 n<t

giving evidence towards a generalized Circle problem.

It is very interesting (and very new) that if f # g, then S;S, still appears to
satisfy a generalized Circlekproblem. Recalling Chandrasekharan and Narasimhan’s
result that S;(X) = Q. (X "2 *1), it’s apparent that both St(n) and Sy(n) oscillate

in size between 4n'7 *i. From first principles alone, it seems possible that S¢(n)
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might be small or negative with S,(n) is large and positive, leading to large can-
cellation in average sums ) S¢(n)S,(n). But Theorem 3.5.3 indicates that there is
not large cancellation of this sort. Indeed, Theorem 3.5.3 roughly indicates that the
partial sums of Fourier coefficients of f(z) correlate about as well with the partial
sums of Fourier coefficients of g(z) as with itself, up to the constant L(2, f x g) of
proportionality.

By mimicking the techniques of Chapter 3, it is possible to apply different integral
transforms to D(s, Sy x S;) or D(s, Sy x S;), either to get different long-average
estimates, or estimates of a different variety.

Short-Interval Averages

Now restrict attention to f a full-integer weight cusp form on SL(2,7Z), and suppose
that f = g. In [HKLDW17¢|, my collaborators and I analyze short-interval estimates
of the type

1 a1
X2/3(log X)1/6 Z 1Sy (n)]? < X* 1z, (1.1)
g |n—X|<X2/3(logX)1/6

which says essentially that the Classical Conjecture holds on average over short
intervals of width X g(log X )% around X. This is qualitatively a much stronger
result than the long-interval estimate, and is a vast improvement over the previous
best result of this type due to Jarnik [Jut87],

Yoo ISP < X

3
ln—X|<X1te

3
ate

It is interesting to note that it is possible to get bounds for individual sums S¢(n)
from short-interval estimates.

Proposition 4.1.1. Suppose that

for w > Then also

1
1

Proof. We only sketch the proof. For each individual Fourier coefficient a(n), we have
Deligne’s bound a(n) < n"z . Suppose there is an X such that Sr(X) > X'z tite,
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Then Sy(X+£) > X5 +ite for ¢ < Xito—< for any € > 0, as it takes approximately

Xite coefficients a(n) to combine together to cancel S;(X). But then
L Z ’Sf(X)P > LXk—l+%+2axmin(w,%+a)'

w Xw
[n—X|<Xw

The X™2(-5+) term comes from the width of the interval where each S (X +Y0)is

approximately X frttita Comparing exponents of X with
1 14l
<o > ISP < XE
In—X|<Xw
shows that
2a + min(w, % +a) < w,
from which either & =0 or o < 3(w — §). O

Corollary 4.1.2. A short-interval estimate of the type (1.1), with interval [n— X| <
X%“, would prove the Classical Conjecture.

The short-interval estimate (1.1) only produces the individual estimate S;(X) <
X %Jr%*%, which is 1/18 worse than the current best-known individual bound
SX) < X 43, On the other hand, it is by far the strongest short-interval
average estimate. (Note that the individual bound S;(X) < X 245 doesn’t give a
Classical Conjecture on average type result for any interval length).

Remark 4.1.3. It is possible to use the short-interval estimate (1.1), along with

an argument used in Chapter 5 which makes use of multiple igtegral transforms in
. . . k—1,1

combination, to recover the Hafner-Ivi¢ tyle bound Sy(n) < n'z *3.

To prove the estimate (1.1), one builds upon the meromorphic information of
D(s, Sy x Sf) and applies an integral transform
1 — 2\ X*
— [ D(s,Sfx Sy)exp (%) —ds
211 J 4 vy

to understand (essentially) a sum over the interval |n — X| < X/y. For more details
and analysis, refer to [HKLDW17¢].

Sign-Changes of Sums of Coefficients of Cusp Forms

As noted in Chapter 8, the original guiding question that led to the investigation
of D(s, Sy x S;) was concerning the sign changes within the sequence {Sf(n)}nen.
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In [HKLDW16], my collaborators and I succeeded in answering our original guiding
question.|

In this paper, we proved a veritable cornucopia of results concerning the sign
changes of coefficients and sums of coefficients of cusp forms on GL(2) and GL(3).
Here, I emphasize what I focused on, and what follows most naturally from the
considerations of Chapter 3.

Let f be a weight 0 Maass form or a holomorphic cusp form of full or half-
integer weight k& on a congruence subgroup I' C SL(2,7Z), possibly with nontrivial
nebentypus. Write f as either

f(z) = ZAf(?’L)\/gKitj(Qﬂ-|y|n)e27rinx

n#0

if fis a Maass form with eigenvalue A; = 1 4¢3, or

f(z) =Y As(mn T

n>1

if f is a holomorphic cusp form. We write the coefficients of f as a;(n) = As(n)n~)
with
k=1 if fis a holomorphic cusp form,

K =17

0 if f is a Maass form,

Then n*) conjecturally normalizes the coefficients Ag(n) correctly depending on
whether f is a holomorphic cusp form or a Maass form. It is expected that Af(n) <
n¢, but in general it is only known that

Ag(n) < not)re

where
0 if fis full-integral weight holomorphic,

a(f) =14 & if fis half-integral weight holomorphic,
7

a1 if f is a Maass form.

tThe story behind the scope of this paper is a bit interesting, as it was written at the same
time as [HKLDW17¢]. Tom Hulse had learned of a set of criteria guaranteeing sign changes from
a paper of Ram Murty, and he first thought of how to generalize the criteria to sequences of real
and complex coefficients. I had thought it was possible to further generalize towards smoothed
sums, but we failed in this regard. This morphed into our generalization, stating how to translate
from analytic properties of Dirichlet series directly into sign-change results of the coefficients. We
each focused on the parts that interested us most: I was interested in Sy(n) and S%(n) (defined
below), Hulse was interested in real and complex coefficients, and Ieong Kuan was interested in
GL(3). In the end, each aspect strengthened the overall paper and led to a nice unified description
of somewhat disjoint sign-change results.
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Define the partial sums of normalized coefficients S%(n) as

y as(m)
S = =0
m<n
Then by studying the Dirichlet series D(s, S%,S¥) and D(s,S%) in [HKLDW16], we
proved the following theorem.

Theorem 4.1.4. Let f be a weight 0 Maass form or holomorphic cusp form as
described above. Suppose that 0 < v < k(f)+ % — ZO‘T(f) If there is a coefficient ay(n)
such that Reay(n) # 0 (resp. Imay(n) # 0), then the sequence {Re S¥(n)}nen (resp.
{Im S¥(n)}nen) has at least one sign change for some n € [X, X+ X" for X > 1,
where

() = 2420 4 if v < w(f)+
%—FQQTU)—FA—FG ifv=~r(f)+=

In other words, we showed high regularity of the sign changes of sums of normal-
ized coefficients, depending on the amount of normalization. As should be expected,
higher amounts of normalization lead to fewer guaranteed sign changes.

However, we show that it is possible to take v slightly larger than x(f), so that
the individual coefficients as(n)/n" are each decaying in size. For example, for full-
integer weight holomorphic cusp forms, we can take

k—1 n 1
v=—+4 - —
2 6 °
and guarantee at least one sign change in {S¥(n)},en for some n in [X,2X] for
sufficiently large X. Yet for this normalization, we have

Sy = 37—

< m 2 —i—é—ea
so that the coefficients are decaying and look approximately like n=1/6. It is a remark-
able fact that the coefficients are arranged in such a way that there are still infinitely
many sign regularly-spaced sign changes even though they are over-normalized.

This suggests a certain regularity of the sign changes of individual coefficients
ag(n), but it is challenging to describe the exact nature of this regularity.
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4.2 Directions for Further Investigation: Non-Cusp
Forms

In the investigations carried out thus far, we have taken f to be a cusp form. But one
can attempt to perform the same argument on sums of coefficients of noncuspidal
automorphic forms.

One particular example would be to consider sums of the form

Sﬁk(n) = Z Tk(m)7

m<n

where 7 (m) is the number of ways of representing m as a sum of k squares. This is
equivalent to the Gauss k-dimensional sphere problem, which asks how many inte-
ger lattice points are contained in By(y/n), the k-dimensional sphere of radius v/n
centered at the origin? A (very good) first approximation is that there are approxi-
mately VolBy,(y/n) points within the sphere, so the question is really to understand
the size of the discrepancy

Pi(n) := Spr(n) — VolBi(v/n).

My collaborators and I have been focusing our attention on this problem. In
the recently submitted paper [HKLDW17b], we proved that D(s, Sgr X Spr) and
D(s, Py x P;) have meromorphic continuation to the complex plane for k£ > 3. Using
these continuations, we were able to prove a smooth estimate of a similar flavor as
in Theorem 3.5.3.

Theorem 4.2.1. For k > 3 and any € > 0,

> Pi(n)?e ™Y = Gy C' X log X + CXF! 4 6y C" X3 + O(XF72),

n>1

where Op—p) s 1 1f k =n and is 0 otherwise. Similarly,

/ Py(t)2e X dt = Sy D' X2 1og X + DX 4 Spey DX 3 + O(XF24),
0

These two statements can be thought of as discrete and continuous Laplace trans-
forms of the mean square error in the Gauss k-dimensional Sphere problem. We are
also able to prove results concerning sharp sums and integrals.

Theorem 4.2.2. For each k > 3, there exists A\ > 0 such that

> Pi(n)® = Gy C'X* M og X + CXF1 4+ Oy (XF17).

n<X
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Similarly, we also have

X
/ (Pe(x))?de = dp—gy D'X* M log X + DX+ O (XM7Y,
0

In the dimension 3 case, this is the first known polynomial savings on the er-

ror term, and represents the first major improvement over a result from Jarnik in
1940 [Jar40], which achieved only /log X savings.

In [HKLDWI17b], we do not prove what A is. In forthcoming work, we will
consider the size of \. We are also working on extending the techniques and results
to the classical Gauss circle problem, when k& = 2.

Remark 4.2.3. There are limitations to this technique. We can only consider forms
f for which we understand the shifted convolution sum coming from f x f sufficiently
well. So we are not capable of understanding sums of coefficients of Maass forms at
this time, since shifted convolution sums of Maass forms with Maass forms remain
mysterious.



CHAPTER FIVE

On Lattice Points on Hyperboloids
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5.1 Introduction

A one-sheeted d-dimensional hyperboloid H,, is a surface satisfying the equation
Xi+- 4+ X7, =X7+h

for some fixed positive integer h. In this chapter, we investigate the number of integer
points lying on the hyperboloid H,4 5. In particular, we investigate the asymptotics
for the number Ny;,(R) of integer points m = (my,...,my) € Z% lying on Hgy, and
within the ball |[m||*> < R for large R. Stated differently, if B(v/R) is the ball of
radius V'R in RY, centered at the origin, then

Nyn(R) = #(Z* N Hap N B(VR)).

Heuristically, one should expect to be capable of determining the leading term
asymptotic using the circle method on hyperboloids H,; of sufficiently high di-
mension. More recently, Oh and Shah [OS14] used ergodic methods to study the
three-dimensional hyperboloid Hs; when h is a positive square. They proved the
following theorem.

Theorem 5.1.1. Oh and Shah Suppose that h is a square. On Hsp, as X — oo,
Nyp(X) =cX2log X + O(X%(logX)%)

for some constant ¢ > 0.

In this chapter, we sharpen and extend this theorem to any dimension d > 3
and any integral A > 1. We also prove a smoothed analogue, including smaller-order
growth terms. The primary result is the following theorem.

Theorem 5.1.2. Let d > 3 and h > 1 be integers. Let Nyp(R) denote the number
of integer points m on the hyperboloid Hay with |[m||* < R. Then for any e > 0,

Nun(R) = Sia—sg0in—aiC4R? log R + C4R2 ™" 4 O(R2 1A+,

Here the Kronecker § expressions indicate that the first term only occurs if d = 3
and if h is a square, and A(d) > 0 is a constant depending only on the dimension d.

This Theorem is presented in greater detail as Theorem 5.5.4, including the

description of A\(d). When d = 3, the power savings A(d) is exactly ﬁ. As d gets
larger, A(d) grows and limits towards %. Note that there is an error term with

polynomial savings, which is a significant improvement over previous results. As a
corollary, one recovers the Theorem of Oh and Shah.
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In addition to the sharp estimate of Theorem 5.1.2, we consider smoothed ap-
proximations to Ngs(R). In (1.1), we show that Ngu(R) = 3, 2 < Ta-1(m® +h).

Then sums of the form
_2m2+h
R

Z ra—1(m? + h)e
mEeEZL
count the number of points m on H,; with exponential decay in ||m|| once ||m|* >
R. This smoothed sum should be thought of as giving a smooth approximation to
Ngn(R). Through the methodology of this chapter, we prove the following smooth
estimate.

Theorem 5.1.3. Let d > 3 and h > 1 be integers. Then for each h and d, there
exist constants C' and C,, such that for any e > 0,

S raa(m? + Ry
MmEeZ
= Sass0peay C' X log X+ D CpXiT17% £ O(X 1727,

0<m<[4-1]

Here, djcondition] 15 a Kronecker § and evaluates to 1 if the condition is true and 0
otherwise.

See Theorem 5.5.1 in §5.5 for a more complete statement. This Theorem suggests
that for dimensions greater than 4, there may be secondary main terms with lower
power contributions.

Theorems 5.1.2 and 5.1.3 can be thought of as average order estimates of the
function r4_;(m*+h). In particular, for 2m*+h < R, the average value of r4_;(m?*+
h) is about RZ1. In the process of proving 5.1.2, we also prove that this average
order estimate holds on short-intervals, i.e. intervals around R of length much less
than R.

Theorem 5.1.4. Let k > % be a full or half-integer. Then for each dimension d,
there is a constant A\(d) > 0 such that

3 ra1(m? 4 h) < X2 e A@),
|2m2+h7X|<X1+€7A(d)

The constant \(d) is the same constant as in Theorem 5.1.2.

This Theorem can be roughly interpreted to count the number of lattice points
m on Hgp, with ||m|| very near X, or equivalently counting the number of lattice
points within a sphere of radius slightly larger than v/X and outside of a sphere
of radius a slightly smaller than v/X. This Theorem can be compared to the main
theorem in short intervals in [HKLDW17¢|, as described in Chapter 4.
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Remark 5.1.5. To make heuristic sense of Theorem 5.1.4, note that there are on

the order of X2t integers m such that [2m2 + h — X| < X+ M@ Therefore,

if each of these values of r4_1(2m? + h) is approximately the size we expect, X d%l_l,

then the total size should be

X%_l .X%+e—)\(d) _ Xg—1+e—,\(d)

Y

which is exactly what is shown in Theorem 5.1.4.

Overview of Methodology

In order to count points on hyperboloids, let d = 2k + 2 (where k£ may be a half-
integer). Then in
X4+ Xy = Xopyo + hy

notice that for a point X on the hyperboloid,
(XF+ -+ X)) T X SR = 2X5 , +h < R

It suffices to consider those points on the hyperboloid with 2X3, ., + h < R. Recall
the notation that r4(n) is the number of representations of n as a sum of d squares.
Then, breaking the hyperboloid into each possible value of X2, 4o + h and summing
across the number of representations as sums of squares, we have that

Nap(R) = Z Popet1 (X0 + h) = Z Pops1 (m? + h). (1.1)

2X3, o +h<R 2m2+h<R
We will find the number of points on the hyperboloid by estimating this last sum.

Consider the automorphic function

k41

V(z) =6 (2)0(=)y =,

‘9(2) _ Ze2ﬂ'inzz

nez

where

is the classical Jacobi theta function. Heuristically, the hth Fourier coefficient of
V(z) is a weighted version of the sum Y  rop41(m? 4+ h), and so proper analysis of
the the hth Fourier coeflicient of V'(z) will give an estimate for Ny (R).

More completely, let P, (z, s) denote a Poincaré series that isolates the hth Fourier
coefficient. Then we will have that

(27r)8+% <Ph(-7 S),‘7> _ Z

k—1
P(s +%57) e

T2k +1 (m2 + h)
(2m2 + h)*+'3
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In order to understand the meromorphic properties of this Dirichlet series, we will use
a spectral expansion of the Poincaré series and understand each of the terms in the
spectral decomposition. As V(z) is not square integrable, it is necessary to modify
17(2) by cancelling out the growth. We do that in the next section by subtracting
carefully chosen Eisenstein series.

Once the meromorphic properties of this Dirichlet series are understood, it only
remains to perform some classical cutoff integral transforms. In Section 5.5, we apply
three Mellin integral transforms described in Chapter 2 and perform classical integral
analysis in order to prove our main theorems of this chapter.

5.2 Altering V to be Square-Integrable

From the transformation laws of 6(z), we see that V satisfies the transformation law

V(yz) = 22 (’2 +(;Zk+ V() (2.1)

for v = <‘CL 3) € I'p(4), and where

o 1 d=1 (mod4)
)i d=3 (mod 4)

is the sign of the dth Gauss sum. Therefore when k is an integer, V is a modular
form of full-integral weight k of nebentypus x(-) = (_—1)k on I'g(4). When £ is a half-

integer, V is a modular form of half-integral weight & on [o(4) with a normalized
theta multiplier system as described in (2.1).

Under the action of I'g(4), the quotient I'y(4)\H has three cusps: at 0, 3, and oo,
We use E¥(z,w) to denote the Eisenstein series of weight k associated to the cusp
a, as detailed extensively in §2.2. We will soon see that V is non-cuspidal, and we
will analyze the behavior of V' at each of the cusps. In doing so, we will prove the

following.
Proposition 5.2.1. For k > 1, define V(z) as

V(z) = V(2) = E& (2, 51) — Ej(2, 542,
Then V(2) is in L*(To(4)\H, k).

In the case when k = %, we define

V(z):=V(z) - const Ef (z,w) — const Ef(z,w),
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where consty,—. f(w) refers to the constant term in the Laurent expansion of f(w)
expanded at w = c. Then V(z) is in L*(To(4)\H, 3).

Proof. Writing 1% directly as

7 k41 . 2 9 5 ) )
V(Z) = § yT627rzz(m1+‘..m2k+l—m2k+2)6—27ry(m1+...+m2k+2)

mi,...,Mak+2€Z

shows that all terms have significant exponential decay in y, except when m; = --- =
. . . k1 .
Mokt = 0, in which case there is the term y%. Correspondingly, at the oo cusp,

V(z) grows like y%. However the function V(z) — y% has exponential decay as
Yy — 00.

At the 0 cusp, we use gy = (g _0%>, a matrix in SL(2,R) taking 0 to oo, and

directly compute
~ —1N\ =1\ . k=1 |=2iz]F
7L = (o) w ()
o0 (?) 12 )\ ) ) (i)

At the % cusp, V has exponential decay because each 6(z) factor has exponential
decay there.

Thus V grows like y% at the oo and 0 cusps, and has exponential decay at the
% cusp. To cancel and better understand these growth terms, we subtract spectral
Eisenstein series associated to the cusps 0 and oo with spectral parameter chosen
so that the leading growth of the Eisenstein series perfectly cancels the growth of
V. We will use the properties of the full and half-integral weight Eisenstein series
associated to the cusp a, E¥(z,w), as described more fully in §2.2. In particular, it
is shown in §2.2 that the constant terms in the Fourier series of the Eisenstein series
E%(z,w), expanded at the cusp a, is of the shape

1—w

y" + c(w)y

for a constant ¢(w) depending on w. Therefore, specializing the parameter w = %,

the leading term from the constant term of each Eisenstein series perfectly cancels
the growth of V' at each cusp. Further, each Eisenstein series is small at each cusp

other than its associated cusp, so for instance EX (z, %) cancels the y% at the oo
cusp and is otherwise small at each other cusp (see [Iwa97] for more).

However, when k is half-integral weight, the Eisenstein series E¥(z,w) has a pole

at w = 3. When k = 1. corresponding to the dimension 3 hyperboloid, the two

1 27
k+1 _ 3

1 1
Eisenstein series % (z,w) and Ej (2, w) each have poles at w = *3= = 7, and so we



7

cannot subtract them from V directly. Referring again to §2.2, it is clear that the
constant term of the Laurent expansion at w = % of each Eisenstein series contains

the leading growth terms y%. Since the constant term in the Laurent expansion is
also modular, we conclude the k& = % case. O

5.3 Analytic Behavior

Let Pf(z,s) denote the weight k Poincaré series

Pi(z,s)= ) Im(y2)°e®™J(y,2)7*

V€L \T'0(4)
where .
_ i3
13(7, 2)]

and j(v,2) = 0(72)/0(z) = e (5) (cz + d)2, exactly as for the Eisenstein series
defined in Chapter 2.

J(v,2)

Our basic strategy is to understand the Petersson inner product (PF(-, s), V(2)) in
two different ways. On the one hand, we will compute it directly, giving a Dirichlet
series DF(s) with coefficients rop,1(m? + h). On the other hand, we will take a
spectral expansion of P and understand the meromorphic properties of each part
of the spectral expansion.

5.3.1 Direct Expansion

We first understand (PF(-,s), V) directly, using the method of unfolding:

(PE(-5). V) = / / . Ph<z,s>md“’;§y

(o) 1 o d
— / / y5_1€2mh2V(2)d]J—y.
0o Jo )

Initially, we consider the case when k > % We'll consider the three dimensional case,
when k = %, afterwards.
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Dimension > 4

Writing V =V — EX (2, B£1) — B(2, 5£1), we compute

<P]’]If:(.’ 8)7 Efo(za %) + Eg(z> %)

P (h B + pf(h BE T(s + § — 5T
(4mh)s—1 [(s

Expanding ‘N/, we can compute the remaining x integral as

1 T o
/ V(z)egmhxd:v:/ 92“1(2)9(2)3;%62”}1%3:
0 0

1
k41 2 2 (2 2 2
— E y2@2”y(m1+’”+m2k+2)/ 6_2“11(m1+"'+m2k+1_m2k+2_h)dx
mi,...,Mak+2 0

k+1 2 2 k+1 2
_ yT E e—27ry(m1+mm2k+2) _ yT E :6—271'y(2m2k+2+h)

mez2k+2 mez2k+2
miteAmiy  =miy oth mitetmiy  =mi o th
kt1 2 —27y(2m2+h
=y 2 E rora(m? 4 h)e 2™ .
MmEZ

To go from the penultimate line to the last line, we write m = mgy,o and count the
number of representations of m? 4+ h. We compute the remaining y integral

2 k=1
/Oo ys+% Z Fopsr (m? + h)€—27ry(2m2+h)d_y — Z rapr1(m? +h) T(s + 5 )
0

~ y = (2m2 + h)*T'E (2m)t T

Define -
(271.)54'?

(s + k—;l)

Then our computation above shows that for k > 1, Df(s) can be written as

Dj(s) := (PF(-,5),V). (3.1)

Z r2k+1(m + h) @k(s)

(2m? + h)”%

MmEZ
where L== 2 k+1 K k+1 k 1
ek (s) = (2m) = (pk (h, 57) + p5(h, 57)) T(s — 5 — 3)
(2h)s—1 [(s— g)

Notice that €§(s) has poles at s = £ — m for m € Zs, coming from the Gamma
function in the numerator, and clear meromorphic continuation.

f@ is an E in an old German font, which many mathematicians would pronounce as “fraktur E”
or “mathfrak E.” We use it because those terms come from Eisenstein series.
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After applying Stirling’s approximation to estimate the Gamma functions, we
have the following proposition.

Proposition 5.3.1. With the notation above and with k > 1, we have

Dh(s) o= DT ipr( g vy = Y L2

O+ 5 2 me +

The function €% (s) is analytic for Res > % except for simple poles at s = k—;l —

form € Zsy, and has meromorphic continuation to the plane. For s away from poles

with Re s > %, we have the bound

¢h(s) < (1+ |s]) 2.

Dimension 3

We proceed analogously, and write V' = V- const,,_
initially for Res > 1. We now need to compute

N

-
-

(Ph%(-,s),const EZ(-,w)) = const <Pf(-,s),Ea%(-,w)>.

w== w:Z

11
Computing the expression for the inner product (P?, E7) for Res > 1 directly and
then taking the constant term in w gives that

1 1 hyw)D(s+w—1)I(s —w
COng’t <P112<'75>7E112('7w)>:(30n8tp ( W <S+w ) <S w)

w=3 w=2 (4mh)s=1 I(s—1)

Qo=

(3.2)

We must now make sense of this constant term.

1
In §2.2) it is shown that pg (h,w) has a simple pole at w = % if and only if h is
a positive square, and otherwise is analytic. Thus the constant term (3.2) manifests
in three ways:

1
(i) The constant terms of pg (h,w), I'(s +w — 1), and T'(s — W)

1
(ii) The residue term of pg (h,w), the constant term of I'(s +w — 1), and the linear
term of I'(s — W)

1
(iii) The residue term of pg (h, w), the linear term of I'(s+w — 1), and the constant
term of I'(s — w).
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Together, these mean that (3.2) can be written as

const,,_s pé(h, w)l'(s — $)0(s = 3)
(4mh)*—1T(s — 1)

Res,,_3 pé(h,w) I'(s—HT(s=3) I'(s—HI(s— 1)
(dmh)s—t I'(s—1) * (s — 1) ) (3.3)
B const,,_3 pe(h,w)l(s — %)
(dmh)s—1
Res,_s pi (hw) (T'(s — DI(s— 3) L,
(i) ( fs-n 0 4))‘

This expression has clear meromorphic continuation to the plane, and the poles and

analytic behavior can be determined from the individual Gamma functions. This
1

expression has a simple pole at s = %, and when pg (s,w) has a pole at w = %, this

expression has a double pole in s at s = 3 coming from I'(s — 3). These are the only

poles in this expression when Re s > %

As in the case when k£ > 1, we define

1 (27r)5—i 1
D? = ———(P2(-,s),V). 3.4
{9 = p BT (3.4
At each cusp a, we also define
1 o) 1 1
et o(5) = 2L const(P (., 5), i ().
F( — Z) w=%

Notice that this is (27)* 1[(s — )" times the expression in (3.3). Finally, define

€ (s) ==& o (s) + € o(s).
Then when k£ > 1, we have that

Dis) = L pi gy vy = 3 ) )

(s — 1) mez, (2m? + h)*i

Although the intermediate steps are different, this final notation agrees with the
notation for £ > 1.

To roughly understand the growth of I"(s), it suffices to use Cauchy’s Integral
Formula by examining (for [Im s| > 1)

1 I'(2) :
/ . 6
P =5 /61(8) (z — S)de < gz [Ds + ),
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where Bj(s) is the circle of radius 1 around s. It is then straightforward to get rough
bounds on I"(s) through Stirling’s Approximation.

Remark 5.3.2. It is possible to get much stronger bounds, but it will turn out that
this rough bound suffices.

We gather the relevant details from this section into the following proposition.

Proposition 5.3.3. With the notation abowve,

B r3(m? + h) 1
l) (2m2 _I_ h)s_% - eh (S)
4 MmeEZ

1
Further, €2 (s) has meromorphic continuation to the plane, and is analytic for Re s >

% except for a pole at s = %. If h is a square, this is a double pole. If h is not a

square, then this is a simple pole.

For s away from the pole at ,Res>1 5, we have the bound

€2 (s) < (1+s])2.

5.3.2 Spectral Expansion

Fix an orthonormal basis of Maass forms of weight k for L?(To(4)\H, k). This basis
consists of Maass forms {y;(z)} of types 5 tit; and corresponding eigenvalues 7 +t2
each with expansion

=Y pi(n) it, (4[nly)e* ™,
n#0

as well as a finite number of Maass forms 4;,(z) with eigenvalues £(1 — £) with
1 < ¢ <k for ¢ a (possibly half-integer) satisfying ¢ = k mod 2, each with expansion

:uje ijf ng %(47T|n‘y>62ﬂ‘inx.
n#0

Note that for each ¢, there are finitely many such Maass forms, as these come from
holomorphic cusp forms of weight ¢. These Maass forms contribute the so-called
bottom of the spectrum, as described in [GH11, Chapter 3|.

Then PF has a Selberg Spectral decomposition [IK04, Gol06] of the form

P/f(%s):Z(Pi]:( )1 (2 Z th ): 1j.0) e (2) (3.5)

] 1
j l<e<k i
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+Z (PF(-, ), R*Y R (2) (3.6)

o Z / ) EY (2, ) du, (3.7)

In this expansion, line (3.5) is the discrete part of the spectrum, line (3.6) is the
residual part of the spectrum, and line (3.7) is the continuous part of the spectrum.
The sums over a are sums over the three cusps of I'g(4). Note that the residual part
of the spectrum exists only when £ is a half-integer, in which case

RE(2) = Reg E¥(z,w). (3.8)

4

Each of the inner products against PF can be directly evaluated. These compu-
tations are very similar to those computations in §2.2 and §5.3.1, and we omit them.
We collect these together in the following lemma.

Lemma 5.3.4. Maintaining the notation above, we have

pi(h) T(s—3+it))l(s — 5 —it))

(R0 = Gy s—5)
£ _t
(PEC ) p0) =
o B
(P, 9), By (-, 3 +it)) = p“éi;;)ift) (s — 5 ﬂ;(lz)f(g)— L it)

Here, pj(h) is the hth coefficient of juj, pje(h) is the hth coefficient of yuj e, pa(h, 3+it)
is the hth coefficient of E¥(z, 3 + it), and RE is as in (3.8).

5.3.3 Meromorphic Continuation of (PF V)

In order to provide a meromorphic continuation for D (s) (defined in (3.1) and (3.4)),
we provide a meromorphic continuation for the expression coming from the spectral
decomposition of Pf(z,s). Inserting the spectral decomposition of PF(z,s) into
(PF(-,8),V), we get

(PECo8) V) =Y AP ) 1) s, VY ) Y APRC ), i) e, V) (3.9)

J l<i<k
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+ Z PF(.,s), R*Y(RF V) (3.10)

T ami Z/ Ey (-, u))(Eq (- u), V) du, (3.11)

where we have again separated the expressions into separate lines for the discrete
spectrum, the residual spectrum, and the continuous spectrum. To study the mero-
morphic continuation, we provide separate meromorphic continuations for the dis-
crete spectrum, the residual spectrum, and the continuous spectrum in turn.

Discrete Spectrum

Consider the discrete spectrum appearing in line (3.9), which we rewrite for conve-
nience:

(P, 8), V) =D (PR 8), 1) (s VI D D (B 8), ) (g, V)

J 1<u<k J

Analysis of the discrete spectrum naturally breaks into two categories: analysis of the
finitely many Maass forms {4 ¢}, coming from holomorphic cusp forms of weight
¢, and analysis of the infinitely many Maass forms {yu;}; with corresponding types
% = it;. Taking inspiration from [GH11, §3.10], we refer to the Maass forms {1;};.
as the old discrete spectrum, and the Maass forms {1, }, as the new discrete spectrum.
We will prove the following proposition in this section.

Proposition 5.3.5. Write s = o + it. The discrete spectrum component has mero-
morphic continuation to the plane, and

(i) For Res > %, the new discrete spectrum is analytic and satisfies the bound

S TPECL ) i)y, VY <ne (L4 [E) T FETe3 (L <Res < 1)
J

1

The new discrete spectrum has a line of poles on Res = 3.

(ii) For Res > % — 1, the old discrete spectrum is analytic and satisfies the bound

S S TBEC ) ) g VY < (L ]2))

l<i<k

E_
2

M\CAJ

=1

In the region Res > 0, the old discrete spectrum has simple poles at s =
E—1—m form € Zs.
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In order to prove this proposition, we prove a sequence of lemmata. We first
bound the infinite sum in the new discrete spectrum.

Lemma 5.3.6. With u; coming from the new discrete spectrum, and with the same
notation as above, we have

Z p](h) <lu’]7 V> - Z p](h) <LL]7 02k+1§y%> << T3k+8+e.

T<|tj|<2T T<|t;|<2T

Proof. First note that E¥(z, %) is orthogonal to the cusp form p;, which gives the

1/4

1
first equality. We recognize 0(z)y'/* as a constant times Res,,_ s E%(z,u). Performing

this on 6 transforms each inner product into

2k+1
1

).

Res(p;, 0% B2, (-, u)y
U=y

Using the standard unfolding argument on the Eisenstein series (which uses similar
methodology to the computations of (P, V') in §5.3.1), we see that this is equal to

Res ) raec1(n)py () T(u+ 5 =3+ 5 +it))D(u+ 5 =3+ 5 —ity)
v=3 st (47m)u+§7% D(u+1)

We bound the size of this residue by first proving a bound in u using the Phragmén-
Lindelof principle, and then using Cauchy’s Residue Theorem to bound the sum.

From the average estimate 74(n) ~ ng_l, one can show that the summation
converges trivially absolutely for Reu > g + %. Applying Phragmé-Lindelof and
using Stirling’s approximation then shows that

7, kL e _—|t;
pi(h) (5, 078y 57 ) < pi(R) (1 + [t;])PFH0Fee Il

Remark 5.3.7. Note that as a residue in u is being taken, the relevant bound from
the ¢; contribution, which is entirely determined by the factors

pi((u+ 5 — 3 +it))(u+§ — § —ity).

Heuristically, the final bound can be attained just from using the Phragmén-Lindelof
Convexity principle on this piece.

As noted in [HKKrL16], it is possible to understand bound p;(h) on average
over j. Through the standard Kuznetsof Trace Formula and arguing as in [HHR13,
Section 4], one can show that p;(h) <5 €e2!%!(1 + |t;|)¢ (on average over j) for
full integral weight k. By using Proskurin’s generalization of the Kuznetsof Trace
Formula, described in [Duk88], one can show the same for half integral weight k.
(This is closely related to an argument in [HKKrL16]).
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Remark 5.3.8. For full-integral weight Maass forms, Goldfeld, Hoffstein, and Lie-
man [GHL94] showed that p;(h) < h%log(1 + [t;|)e 24! for each individual t;,
where 6 denotes the best known progress towards the non-achimedian Ramanujan
conjecture. This is a superior bound than even the on-average bound given by
the Kuznetsof Trace Formula, but it doesn’t immediately generalize to half-integral
weight Maass forms.

The on-average bounds then give that
(g, 751Gy 2 ) < (1 [t5]) 0 +ee 51

on average. Recalling that there are O(T?logT) Maass forms with T < |¢;| < 2T,
summing these terms together gives

ST pih) (g, 0y ) < (1 Jty]) PR

T<t;|<2T

This concludes the proof. n

It is also necessary to note that Selberg’s Eigenvalue Conjecture is known for
weight k& Maass forms on I'g(4).

Lemma 5.3.9. Suppose i; is a Maass form appearing in the old discrete spectrum
described above. Denote the type of p; by %—H'tj, so that (i is an eigenfunction of the
Laplacian with eigenvalue \ = }lJr t?. Then A > i. That s, there are no exceptional
ergenvalues.

Proof. This is an argument given by Gergely Harcos at the Alfréd Rényi Institute of
Mathematics in an answer at MathOverflow [fMhfm]. We sketch the argument here.
A half-integral weight Maass form with eigenvalue (1 —¢?)/4 has a Shimura lift to an
integral weight Maass form on I'g(1) with eigenvalue % —t2. As Selberg’s Eigenvalue
Conjecture is known in this case (see [BB13]), this completes the proof. O

Now fix s = o + it with < o < 1. We write |¢;| ~ T to mean T < |t;| < 27T for
the rest of this section. Then

> (P 8) ) g V)Y = >

[t;|~T [tj|~T

(47h)s=1T (s — &)

pi(h)(u;, V).

In this expression it is clear that the rightmost poles in s are at s = % =+ #t;, which
occur on the line Re s = % By Stirling’s Approximation, this is asymptotically

L+t 4+ )7 A+ — 4507 e et
2{: ( | ]’) ( ’ J’) e 5 ([t+t5]41t t]||ﬂ)Pj(h)<Mj,‘/>- (3‘12)

; _1_k
S by g
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Examination of the exponential contribution shows that there is large exponential
decay in t; when [t;| > [¢|, so we only need to investigate the convergence when
t;] < |t|. Then (3.12) is bounded by

which, by Lemma 5.3.6, is bounded by
One (14 [t 35 ee11).
Summing dyadically gives the first part of the proposition.

For the second part of the proposition, recall the inner product from Lemma 5.3.4

s—1

pieh)” T(s+5—DI(s - 35)
(47h) T(s—5

<Pi]:(7 s)>y’j,€> =

As the sum over j and ¢ are each finite for the old discrete spectrum, the analytic
properties in s can be read directly from the inner products (PF, i;,). The leading
poles all come from the Gamma function I'(s— g) in the numerator. Note that the first
apparent pole is at s = % is cancelled by the Gamma function in the denominator,

but there are poles at s = £ — 1 —m for m € Zx.

Residual Spectrum

Consider the residual spectrum appearing in line (3.10), which we rewrite for conve-

nience:
k k\ / pk
Z(Ph ('7 5)? Ra><Ra7 V>
a
The residual spectrum only occurs when k is a half-integer. For each cusp, (RF, V)
evaluates to some constant and doesn’t affect the analysis in s. Referring to Lemma 5.3.4,
we see that

Resw:% pk(h,w) I'(s— %‘)F(s - zé;)
(47h)s=1 (s —5)

<Pif:(’ S)’ Ra> =
As described in (2.1), the residue in p¥(h, w) comes from a potential pole in
L(2w -1, (bt )
3

at w = 5. This L-function has a pole if and only if the character is trivial, which

occurs if and only if A is a square, and k = % + 2m for some m € Z>,.
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Therefore, if h is not a square or if k is not of the form % + 2m, then the residual
spectrum vanishes. If h is a square and k = %4— 2m, then the residue is nonzero, and
the analytic properties of the residual spectrum can be read directly from

Ds = DT = %)

4 4

(4wh)s—1T(s — g)

(3.13)

We codify this in a proposition.

Proposition 5.3.10. The residual spectrum in line (3.10) vanishes unless h is a

square and k = % + 2m for some m € Zsq, in which case the residual spectrum has

meromorphic continuation to the plane and is analytic for Res > 0, except possibly
3

_ _1
Jor poles at s = § and s = ;.

Continuous Spectrum

Consider the continuous spectrum appearing in line (3.11), which we rewrite for

convenience: .
e § (P,f(,s),El’f(,u))(Ef(,u),V>du
47 " /(é)

Referring to Lemma 5.3.4, we see that

palh, 5 +it) T(s — 5 +it)T(s — 5 —it)
(4mh)s—1 I'(s— %)

2

<Ph(" S)v Ef(‘? % + Zt» =

The Gamma functions can be approximated through Stirling’s Approximation. Each
pa(h, % + it) can understood through the Phragmén-Lindeldf Principle to satisfy the

bound p(h, 3 +it) < (1 + Jt])i—=*e

The first apparent poles in s can be read from the Gamma functions, and it is
clear that there are no poles in s for Re s > %

The other inner products, (E¥(-,u), V), can be understood through Zagier nor-
malization [Zag81]. In particular, since V = cy% + O(y=) for some constant ¢
and any N > 0 as y — oo (and more generally, at each cusp), Zagier normalization
allows us to identify

(E%(u),V) z/ooo%(y)y"‘l%y= Lo + 2 JZTQkH(n)Tl(n) (3.14)

ut b
n>1

n 2

for % < Reu < % and give meromorphic continuation to the plane. Here, Vj is

the Oth Fourier coefficient of V = 62410, which was first defined in §5.1. Notice that

the region of identification includes Reu = %, as is necessary for this application.

Similar expressions exist at the cusps 0 and %
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Remark 5.3.11. Zagier normalization also gives that the Dirichlet series at the right
in (3.14) has a potential pole at u = %, which agrees with on-average estimates.
The function r1(n) is essentially a square indicator function, so the Dirichlet series

can be rewritten as
9 r 2k+1
k+1
2(ut1 1)

n>1 1

in which it is straightforward to use the Gaussian heuristic to confirm the pole from
Zagier normalization.

Using the functional equation of the Eisenstein series to give the functional equa-
tion of the Dirichlet series in (3.14) and applying the Phragmén-Lindel6f Convexity
Principle guarantees that

(BE(-, 3 4it), V) < (14 [t])% 1

Denote Res = o, and suppose % < o < 1. Applying Stirling’s Approximation and

the bounds above, we can now estimate

1
T <P/f(7S)aEf(’U)><Ef<>u)aV>du
miJ ()
[e.e] 1_k € — € o— o—
< / (L4 [¢))a2 )+t (1 4 |5+ ¢])771(1 %: |8k— t|) 1e—g(|s—t|+\s+t|—|s|)dt.
oo (4mh)o—1 (14 |s[)735

When [t| > |s]|, there is significant exponential decay in t, effectively cutting off the
integral to the interval |t| < |s|. Within this interval, the integral can be bounded
by
Is|
/ (14 D33 (1 4 |s) 5 de 301t < (14 [s]) % 3+ee 50,
—|s]
Proposition 5.3.12. The continuous spectrum in line (3.11) has meromorphic con-

tinuation to the plane and is analytic for Re s > % and has apparent poles at Re s = %
For % < Res < 1, the continuous spectrum satisfies the bound

i Z/ EF (- w))(BE(yu), Vidu < (1 4+ |s])- e 31,

5.3.4 Analytic Behavior of D}(s)

We are now ready to describe the analytic behavior of Df(s) for each k > %, for
Res > 1. Recall that DJ(s) is defined in (3.1) and (3.4) as

(27?)”%

m(ﬂ?(vs)am-

Dj(s) =
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In Propositions 5.3.1 (for k¥ > 1) and 5.3.3 (for k = 3), it was shown that

Di(s) =Y (Zfﬂ;ﬁ%t M ek (3.15)

meZ
and the analytic properties of €#(s) are described. On the other hand, through
the Spectral Expansion of PF, we also have an expression for (PF(-,s),V), given
n (3.9)-(3.11). Multiplying by (27)""2 ['(s + E=1)~1 and rearranging (3.15), we
have

Z T2k +1 (m2 + h) _ st (S)

(@2m2 + b+

(277)5+% ( k )
+ = P, ) ; + ) 7V
F(S—i—%) ;( h N] :u] Z h NJZ ﬂjé )

(2r)*t"%
(s + %5 1)

_|_(27TSJr Z/ (Pk, EMV(E* V)
Fs+k14m ho '

where the lines are separated into the Eisenstein correction factors in V', the discrete
spectrum, the residual spectrum, and the continuous spectrum, respectively. The
analytic properties of the discrete, residual, and continuous spectra are described in
Propositions 5.3.5, 5.3.10, and 5.3.12, respectively. Assembling these propositions
together, we have proved the following theorem.

meZ

(3.16)
> (P, Ra) (R, V)

Theorem 5.3.13. Let h > 1 be an integer and k > % be either an integer or a
half-integer. The Dirichlet series

Z r2k+1(m2 + h)

(2m2 + h)*+'7

mEZ

has meromorphic continuation to the plane, and is analytic for Res > % except for

e simple poles at s = % —1—m form € Z>q, coming from the discrete spectrum,

e simple poles at s = £L

factors €5(s), and

—m form € Z>q, coming from the Eisenstein correction

e a double pole at s = % when k = % and h is a square, also coming from €% (s).
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5.4 Integral Analysis

We are now ready to perform the main integral analysis on (PF(-,s),V). In this
section, we handle the k > % case. We will examine

ok (n® +h) k1
X214 d
i |, 2 e X o),

which is closely related to studying

D R i

— M T st 5L (s)ds.
270 J o) (s + 51) v(s)

We will use three integral kernels Vy-(s) described in Chapter 2. We denote the
Mellin transform of Vi (s) by vy (z) when appropriate.

From the decomposition in (3.16), it will suffice to consider the integral transforms
applied to &F, the discrete spectrum, the residual spectrum, and the continuous
spectrum separately. In each integral, we will shift the line of integration to % + €
for a small € > 0 and analyze the poles and residues.

5.4.1 Integral Analysis of ¢}

We first study
1 P
%/U) @Z(S)X T3 Vy(S)dS.

From Theorem 5.3.13 and Propositions 5.3.1 and 5.3.3, we recognize that &F has

poles at s = % —m for m € Z>(. All of these poles are simple, except when £ = %
and h is a square, in which case the leading pole at s = % = % is a double pole.

As €} is of moderate growth for Res > 3 and each kernel Vy (s) is of rapid decay,
we may shift the line of integration to % + ¢, and by Cauchy’s Theorem we have

1

— [ eF ()X T Vi (s)ds

37 ), G v(s)
1 g k=L —m

- CH(s) X7 Vo(s)ds+ Y RE,, XA (B —m) (4.1)
21 1o
2 0<m<%
+ S 1)0pha? (R;X% log X Vi (3) + RQLXév{/(%))
where

RE .= Res €i(s)

—kt1l
s="3=—m
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1
and where R}, is the coefficient of (s — 2)~? in the Laurent expansion of €72 (s). The

Kronecker § symbol is used here to mean

1 if k= and his a square,
5[k—1]5[h a] - .
0 otherwise.

To estimate the shifted integral, recall from Propositions 5.3.1 and 5.3.3 that for

Res > %, we know the bound €f(s) < (1 + |s|)2. Therefore as long as Vy(s) <

(1 + |s])~27¢, the integral converges absolutely. With respect to the three integral
transforms, thls means that

1 )
- e in(s)X”%F(s + E)ds < Xate (4.2)
3te
1 L ey )
e e ()X T s <« X5ty (4.3)
T 1
(5“!‘6) y
= EF ()X T By (s)ds < X 2TV 2T (4.4)
27Ti (l+ ) h Y ' ’
3 €

5.4.2 Integral analysis of the discrete spectrum

We now study the integral of the discrete spectrum. To condense notation, we
introduce the notation

‘ 1 s+%
discretef (s) ::L)(Z<P}I:7,u] i, V —1—2 o 1) MJ€7V>)

k—1
F(S—FT §

Then the integral of the discrete spectrum can be written as

1
5 o discretel (s) X2 Vi (s)ds. (4.5)

From Theorem 5.3.13 we recognize that the integrand has simple poles at s = g -m

for m € Z>, coming from the finitely many terms of the “old” discrete spectrum.
Therefore, shifting the line of integration to % + ¢ and applying Cauchy’s Theorem

shows that (4.5) is equal to

L 1
S RE XV e g [ diseree (54 T i (s)ds.
- B) ’ ™ (l+€)
0<m< R
k

where RF | ., are the collected residues of the old discrete spectrum at s = 5 — M.
2
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To estimate the shifted integral, note that from applying Stirling’s Approxi-
mation to I'(s + %)_1 and using the approximations from Proposition 5.3.5 that
discretef (s) < (1 + |s])3*+2 <. Therefore as long as Vi (s) < (1 + |s|) 732 ~2¢_ the
integral converges absolutely. The three integral transforms then give

1 - k—1
— discretefl(s)X”%F(s + —)ds < Xote (4.6)
271 (%+E) 2
1 L T2 Y2
— discretet (s) X+ LY g0 o xhrey ki (4.7)
i J 1
(5+€)
1 . k s+ Rzt ke 3k+10 426
90 discretey, (s) X2 Py (s)ds < X2TY 2 2T, (4.8)
i J 1
(5+€)

5.4.3 Integral analysis of the residual spectrum

We now study the integral of the residual spectrum,

1 (2m)st 2

[ 22 NTpE REYRE VX T VA (s)ds. 4.9
27TZ (0) F(S"‘k—;l) Z( h a>< a > Y( ) ( )

a

From Theorem 5.3.13, Proposition 5.3.10, and the analytic properties of the residual
spectrum as described in (3.13), the residual spectrum is analytic for Res > % + €

and is bounded by O((1 4 |s|)2). By Cauchy’s Theorem the integral (4.9) is equal
to the shifted integral

: Cm) ™ S~ Pl R RE V)X (5
b [ ——— , Iig s S)as.
21t J(1 1 (s + kL) - " ‘ v

As long as Vi (s) < (1 + |s|)"2%<, this converges absolutely. The three integral
transforms then satisfy the bounds

1 (27T)s+% k pk\/pk s+EzL k—1 Ete
2_7T'i /(é_i_e) m ;(PIwRaﬂRav V)X 2 F(S + T)ds < X2 (410)

1 2 S+% _ TI'S2/Y2
[ B SR R v
( a

k 1
- ds < X27Y21¢(4.11
27 1ig (s + %) ( )

1 (27)%% k pk\/ pk s+hs1 Eyey L42e
2 ) )mZ(Ph,RaMRa,V)X 7 By (s)ds < X2TY 272 (4.12)
gte 2 a
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5.4.4 Integral analysis of the continuous spectrum

We now consider the last integral, the integral of the continuous spectrum:

1 [ @rs f et
2mi o) (s + 5= k’ 1 4mz " (P ENY(EE V)X 72 Vi (s)du ds. (4.13)

Recall that we use u to denote the variable within the Eisenstein series E¥(z,u),
though we omit this from the notation. By Theorem 5.3.13, we know that the con-
tinuous spectrum is analytic for Res > 3. By Cauchy’s Theorem, the integral (4.13)
is equal to the shifted integral

! (2m) Z/ (PF, ESY(EF VX2 Vi (s)du d
— , 2 s)duds.
211 Jiyo D(s + 57 k L 4m 1y h v

From Stirling’s Approximation applied to F(s —|— 5 )_ and the bounds from Propo-

sition 5.3.12; as long as Vy(s) < (1 + |s])72" 1~ 26 the shifted integral converges
absolutely. The three integral transforms thus satlsfy the bounds

1 2r) 5 1

2mi Jor, o T(s + E=1) 4

" Z/ (PF,EEY(ES VIX 5 T (s + 1) duds < X357
! / (2m)*+s 1
270 J(30 D(s + 551) 4mi
% 1671-52/)/2
X Z/ (P, B (BE, V) X5 5
s Y3

1 (2m) T 1
21 (1+o) (s + %) 47

(4.15)
duds < X 5Hey sk+ite

(4.16)
g Z/ (P, E)(Eq, V>XS+%‘I)Y(S)du ds < X 2Tey shtite
B

5.5 Proof of Main Theorems

Using the integral analysis from the previous section, we now prove the main theo-
rems of this chapter.
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5.5.1 Smoothed Main Theorem

Consider the integral transform

Tokp1(m® +h) o k1 b1
E X r E=2)ds.
i /(a) = Pl 2 )ds

On the one hand, by the standard properties of the transform (in §2.3), this is exactly

the sum
Z T2k+1<m + h) (2m? +h)/X

meZ

On the other hand, by (3.16) and the analysis in the previous section (and in par-
ticular the bounds from lines (4.2), (4.6), (4.10), and (4.14), as well as the residual
expression in (4.1)), this transform is equal to

[N

> R, D(k—m)Xtm 4 Ot 1)0(h=a?) (R;X% log XT'(3) + R,I"(5)X

0<m<%

b BT m) X o)

2
0<m< iyt

This proves the following theorem.

Theorem 5.5.1. Let k > % be a full or half-integer. Then

> Topga(m? 4 h)em BmHENX <

meZ

1

:5[k=;15[h=a21(R%X5logXF(%)+R’F’% ) S RE Tk —m)XEm

0§m<
+ Z R:—%—m,hr(k - % - m)X’“—%—m + O(X%—&-e)‘
0§m<%

Here, d(condition) 1 a Kronecker § and evaluates to 1 if the condition is true and 0
otherwise, and the constants Ry, and Rj are residues as defined in §5.4.

5.5.2 Main Theorem in Short-Intervals

Consider the integral transform

ws2/Y?
/ Tok+1(m? +h) X WSy / s
2mi Jiy 2 o2 1 ) S Y
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On the one hand, by the properties of this integral transform as described in §2.3,
this is exactly the sum

( _ YZlog*(X/(2m® + h)))_

Z rok+1(m” + h) exp gy

meZ

When 2m? + h € [X — X/Y, X + X/Y], the exponential damping term is almost
constant. But for m with [2m?+h— X| > X/Y '~ the exponential term contributes
significant exponential decay. Further, by the positivity of rox,1, we have that

ws2 /Y2

h -1
Z raks1(m?® + h) <<_/ Z Pk & )XSJFkTe—ds.

2 2 s+E51 Y
[2m2+h—X|< m 2m + h

Remark 5.5.2. Roughly speaking, this should be interpreted to mean that this
integral transform concentrates the mass of the integral on those m such that 2m?+h
is within a short interval around X.

And on the other hand, by (3.16) and the analysis in the previous section (in
particular the bounds from lines (4.3), (4.7), (4.11), and (4.15), as well as the residual
expression in (4.1)), this transform is equal to

(%)

exp(5y) L R O
Y

O 110 2RX1XR/X
““““”("20g+ Y) %

k—
Y

In this expression, we only kept the leading poles. As we are only seeking to create
an upper bound, we simplify the above expression into the bound

1
2

+O( ) + O(Xgﬁ-&y?)k—i-g—f—e)‘

Xk+e

O(

)+ O(X s ey 3kt g +ey, (5.1)

We choose Y to balance the expressions in (5.1). The two terms are balaned
when Y = XVE+#+%), This gives the overall bound

O(XFFe k)Y where \(k) = . (5.2)

We have now shown that

Z r2k+1(m2 —i—h) < Xk+€_>\(k),
[2m24h—X|<X 1+e=AK)

where A(k) is defined by (5.2). This is the content of the second main theorem in
this chapter.
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Theorem 5.5.3. Let k > % be a full or half-integer. Then

Z 7’2k+1(m2 —i—h) < Xk+€_>\(k),
|2m2+h— X |< X 1H+e=Ak)

where A(k) is defined as

5.5.3 Sharp Main Theorem

Finally, consider the integral transform

T2k+1 ) S+7
s / Z X e (s

On the one hand, by the description of this integral transform in §2.3, this is exactly
the sum

Z r2k+1(m2 -+ h) -+ Z T2k+1<m2 + h)gﬁy(%ﬂ) (53)

|2m?+h|<X X<|2m2+h|<X+%
As ropyq is always positive, we can bound the second term above by
Z Tk (m® + h)cby(W) < Z Fops1(m* + h). (5.4)
X<[2m24+h|<X+55 12m24+h—X|<X
Notice that this is a short-interval type estimate, exactly as considered in Theo-

rem 5.5.3.

On the other hand, by (3.16) and the analysis in the previous section (and in
particular the bounds from lines (4.4), (4.8), (4.12), and (4.16), as well as the residual
expression in (4.1)), this integral transform is equal to

> RE, X (R +0R)
0<m<%
+ O=110h=a?] (RéXé log X (24+ O(%)) + R, X2(— 4+ O(%)))
+ Z R ~1 Xk_%_m(k—%lfm _}_O(%))

O§m<

+ O(X§+€Yé+e) + O(X§+ey3k+12—7+26) + O(Xg—&-eygk—i-%—&—%)'
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We note that we have used that @y (s) = 1+0(5) and ®%(s) = —%+0(5-) from §2.3
to simplify the residual terms involving the weight function ®y. These contribute to
the error terms in this expression.

Keeping only the leading terms of growth, we rewrite this as

Xzlog X
R (QR;Xé log X — 4R;X%) +1RE, X* 4 0(%)

Xk
+0(57) +0(X ) 4 O(X Ty ),

The collected error terms can be written as

o k+e

1 X
OX2)+0
(X2 +0(
Notice that the terms including Y are the exact same expression as in (5.1), and
so the choice of Y that optimizes the error bound is the same! That is, we choose
Y = X*® where \(k) is defined as in Theorem 5.5.3.

) 4 O<X§+ey3kz+%+26)

By combining this optimal error term and choice of Y = X**) with the expres-
sion (5.3) and the bound (5.4), we have shown that

2 z/ Z Paki (7 +h> CXOHE By (s)ds
T

(2m? + h) sHigt

- Z Tops1(m?® 4+ h) + O( Z rokr1(m’ + h))

[2m2+h|<X |2m24h—X|< X 1+e= (k)

_5[k 110(p=q2] <2RthlogX AR, X > )+ Rthk+O(Xk+e AR,

Rearranging, this shows that

Z r2k+1(m2 + h)

[2m2+h|<X
= 5[k:%}5[h:a2} <2R/hX; log X — 4R2X%) + %RZ’th + O(Xk+5*/\(k))
+ 0( > ran (m® + h)) .
|2m2 4 h—X| < X1+eAK)

By Theorem 5.5.3, the last big Oh term is bounded by O(X**=**)) This concludes
the proof of the following theorem.

Theorem 5.5.4. Let k > % be a full or half-integer. Then

Z T2k+1(m2 + h)

|2m24+h—X|<X
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= Ope1iOh=a?] (QR;LX% log X — 4Rgxé) + LR} XP + O(XETA W),

where (k) is defined as

In particular, if k = % then

Z T2k +1 (m2 + h)

|2m2+h—X|<X

e (273X hog X — AR XE) 2R, X 4 O
and for k> 1

> rwa(m? 4 h) = 1RE,XE 4 O(XFA),

[2m2+h—X|<X

Remark 5.5.5. It is interesting that the shape of the main term is different in the
dimension 3 case (when k = %) compared to all higher dimensions. There is a rough
heuristic argument that explains this. Counting solutions to X? + Y2 = Z2 4 h is
the same as counting solutions to (Z — X)(Z + X) = Y2 — h, which can be thought
of as counting the number of factorizations of Y2 — h as Y varies. The number of
factorizations of Y2 — h depends heavily on whether or not h is a square. If h is not
a square, then there are expected to be relatively few factorizations. If h is a square,
then there are expected to be logarithmically many factorizations in Y. Thus if Y
varies up to size v/ X and there are log Y many factorizations on average, we should
expect X 2 log X terms.

In higher dimensions, this factorization heuristic doesn’t apply. And in higher
dimensions, the regularity of representation of integers as sums of many squares
should smooth away irregularities present in low dimension.



CHAPTER SIX

An Application of Counting
Lattice Points on Hyperboids
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In this Chapter, we highlight one particular application of counting lattice points on
one-sheeted hyperboloids. In particular, we describe how to understand sums of the

form
> d(n®+1),

n<X

where d(n) denotes the number of divisors of n.

Connection to the Divisor Sum Y d(n? + 1)

The special three dimensional hyperboloid
X+ Yi=2"+1

is closely related to the divisor sum

> dn®+1),

n<R

which has been heavily studied by Hooley [Hoo63]. This relationship is visible
through the following theorem.

Theorem 6.0.1. Let d,(n) denote the number of positive odd divisors of n. Then

#{ Integer points on X* +Y? = Z? + 1 with |Z| < R} = Z 4d,(n* +1).

n<R

To prove this theorem, we first prove this lemma.

Lemma 6.0.2. Given an integer Z, we first show that Z*+ 1 is not divisible by any
prime congruent to 3 mod 4.

Proof. Indeed, factorize Z + ¢ as a product of Gaussian primes
Z+i=nk. gk
Taking norms and letting N(m;) = p;, we have

7241 =ph - ph

A Gaussian prime 7; satisfies exactly one of the following:

(i) mj =144 or m; =1 —4 (in which case 7; | 2),
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(ii) N(m;) =1 mod 4, or

(ili) =; is inert, and is a prime congruent to 3 mod 4 in Z.

Therefore if Z? + 1 is divisible by a prime congruent to 3 mod 4, then there is an
inert prime 7; dividing Z + ¢ and (by conjugation) also Z — 4. But then m; divides
Z +1i— (Z —i) = 2i, which is impossible as ; is inert and thus doesn’t divide 2.
Therefore Z2? +1 is not divisible by a prime congruent to 3 mod 4, and this concludes
the proof of the sublemma. n

Returning to the proof of the theorem, it is a classical result that the number of
ways of writing a non-square n as a sum of two squares is given by %(61 + 1)(es +
1)--- (e, + 1), where e; is the multiplicity of the prime p; congruent to 3 mod 4
dividing n. (This is under the assumption that n can be written as the sum of two
squares, which is the case we are interested in). In this formulation, note that we
consider X? 4+ Y? and (—X)? + Y? to be the same representation. Therefore the
number of ways of writing Z% 4+ 1 is 5(k; + 1)(ko + 1) - - - (k, + 1), excluding 2 and
its exponent from the list. This is exactly half the number of odd divisors of Z2 + 1,
which we denote as $do(Z2 + 1).

As each individual representation X2 +Y? = Z2 + 1 comes with the eight lattice
points (£X, £Y, +7), we see that the number of lattice point solutions to X?+Y? =
Z? +1 with |Z] < R is given by

8 3do(Z°+1).
Z<R

This completes the proof of the theorem. O

Note that when n is even, all the divisors of n? 4+ 1 are odd and d(n? + 1) =
dy(n?+1). On the other hand, when n is odd, then n? + 1 is divisible by 2 exactly
once, and d(n*+ 1) = 2d,(n*+1). Therefore it is possible to convert the summation

to >_d(n?+1).

As a corollary to the proof of the above theorem, one can prove the following.

Corollary 6.0.3.

#{ Integer points on X* +Y? = (2Z)* + 1 with |Z| < R} = Z 4d,(4n* + 1)

n<R

= 4d(4n’ +1).

n<R
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While this hyperboloid is not studied in this thesis, the methodology still applies
and it is possible to obtain asymptotics with error term for this lattice counting
problem as well.

Further, if we denote

Ni(R) := #{Integer points on X* +Y? = Z? 4+ 1 with |Z| < R}
No(R) := #{Integer points on X* +Y? = (22)* + 1 with |Z| < R},

then one can now easily compute that

N (R Ny(R/2
Zd(n2+1): 1()_ 2(/)
2 4
n<R
In this way, we convert a classical, and still somewhat mysterious, divisor sum into
two lattice counting problems.

In the future, it would be a good idea to optimize the arguments in Chapter 5
in order to try to improve estimates for divisor sums. In particular, in the integral
analysis for proving the main theorems, it is possible to further shift lines of inte-
gration and handle resulting residue terms (although one would also need to get a
deeper understanding of the underlying analytic behavior).

Remark 6.0.4. Similar techniques may be applied to study

> d(n® + h)

n<R

for any positive h, although the computations look progressively messier.



CHAPTER SEVEN

Conclusion and Directions for
Further Investigation
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In the preceding, we considered two problems closely related to the classical Gauss
Circle problem.

We first considered partial sums Sy(n) = > _ a(n) of Fourier coefficients of
a cusp form f(z) = > a(n)e(nz), and showed that on average these partial sums
behave like the error term in the Gauss Circle problem. To study these partial sums,
we constructed the Dirichlet series

D(s, 8y x S) =3 —Sﬂ(gffl(n),

n>1

as well as some related Dirichlet series, and showed that these Dirichlet series have
meromorphic continuation to the plane.

The primary challenge comes from understanding the properties of the shifted
convolution sum
Z a(n +m)a(n)

o (n _|_ m)snw .

In Chapter 3, we approached this sum through a spectral expansion of a Poincare
series appearing in an inner product against an appropriately chosen product of
cuspforms. We showed that this spectral expansion is, to a large extent, explicitly
understandable. By relating the properties of partial sums of coefficients of cusp
forms to a particular spectral expansion, we explicitly relate the arithmetic properties
of the coefficients to the very analytic properties of the spectrum of the hyperbolic
Laplacian.

It is interesting to reflect on the successes and limitations of this approach. In
Chapters 3 and 4, we showed that we are now able to prove many improvements to
classical results. But we were unable to improve the estimate for the size of a single
partial sum. Instead, we are only capable of matching the estimate due to Hafner
and Ivi¢ that

Sp(X) < X7t

From the point of view of this thesis, the obstacle to further improvement was di-
rectly seen to be lack of understanding of the discrete spectrum (in terms of their
distribution and cancellation) and the Lindel6f Hypothesis (or rather subconvexity)
type bounds for Rankin-Selberg convolutions. Fundamentally, the techniques in this
thesis are very different from previously attempted techniques — thus the similarity
in the final bounds heuristically seems to represent an absolute bound on our current
understanding.

In Chapter 4 we noted several other applications of the Dirichlet series D(s, Sy x
Sy), including several projects that have already led to published papers [HKLDW17a,
HKLDW17c¢, HKLDW16]. We have shown that the Dirichlet series D(s, Sy x Sy)
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present powerful tools to study a variety of questions related to the size, shape, and
behavior of sums of coefficients of cusp forms. Through analysis of D(s, S x.S,), it is
possible to prove results on long interval estimates, short interval estimates, and sign
changes. More generally, one can apply many different Mellin integral transforms to
D(s,S; x S,) in order to directly study different aspects.

One avenue of exploration that my collaborators and I have begun to explore
it to perform an analogous construction of D(s, Sy x Sy) in cases when f is not a
cusp form. This is proving to be a very interesting direction, and we will be able
to explore more and different variants of the Gauss Circle problem. One particular
direction is discussed at the very end of Chapter 4.

There is another interesting direction for further exploration, based on the tech-
niques and observations from Chapters 3 and 4. As an individual Fourier coefficient is
roughly of size a(n) ~ n"T and the partial sum appears to satisfy St(n) < n'T i,
there is a large amount of cancellation among individual coefficients.

But I ask the following question: What if we consider partial sums formed from
the partial sums Sy(n)? That is, what should we expect from the sizes of

> Si(n)?

n<X

Further, what if we iterate this process and consider sums of sums of sums, and
so on? Initial numerical investigation suggests that there continues to be extreme
amounts of cancellation, far more than would occur by merely random chance.

In Chapter 5, we considered the question of how many points lie within the
d-dimensional sphere of radius v/R and on the one-sheeted hyperboloid

which is essentially a constrained Gauss Sphere problem. We were able to prove
improved bounds and asymptotics for this number of points.

On comparing the main techniques of Chapter 5 with those of Chapter 3, it
is clear that there are many similarities. In both, we reduce the study towards
sufficient understanding of a carefully chosen shifted convolution sum. And in both,
we understand the convolution sum by translating the properties into properties of
functions associated to the spectrum of the hyperbolic Laplacian.

The analysis and proof of the main theorem of Chapter 5 is not completely
optimized. In particular, it is possible to perform a very close and detailed analytic
argument, similar to the argument appearing in [HKLDW17¢|, in order to further
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improve the bound on the main error term of the lattice point estimate. It may even
be possible to improve estimates for the divisor sum _ d(n? + 1), whose connection
with lattice points on hyperboloids is explained in Chapter 6.

More generally, the ideas and techniques of Chapter 5 can be extended to more
general products of theta functions. By replacing the Jacobi theta function with
theta functions associated to different quadratic forms, it should be possible to un-
derstand a wide variety of quadratic surfaces.



CHAPTER EiguT

Original Motivations
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Let me describe briefly what we set out to prove and how different the final results
actually are.

Chapters 3 and 4 were inspired from a single question that Jeff Hoffstein asked
after a talk from Winfried Kohnen during Jeft’s Birthday Conference. Kohnen de-
scribed new results on sign changes of cusp forms, and Jeff asked whether or not it
was possible to prove that sums of coefficients of cusp forms change sign frequently.

Very naively, I thought that if I could understand this question, I would probably
use the series D(s, Sy) = > - Sp(n)n™ and D(s, Sy x Sy) = > -, |S¢(n)[*n~=,

The reason for this is simple: one way to determine that a sequence changes
signs often is to show that partial sums of squares are large while partial sums are
small (indicating lots of cancellation). This fundamental idea was included within
Kohnen’s talk. As for the use of these Dirichlet series — it’s in some sense the first
thing that a multiplicative number theorist might try.

I doodled on this question for a few talks, and shared my doodles with Tom
Hulse. Tom had two quick ideas: firstly, he knew of an exact set of conditions that
guarantee sign changes in intervals; secondly, he knew a Mellin-Barnes transform to
decouple denominators. This seemed like a short, quick project, so we set out to
prove sign changes.

We were wrong. This was not short nor quick, and as we delved into the problem
it became apparent that there were significant obstacles in the way of understand-
ing the spectral analysis. In some sense, we knew that these were understandable
from the general philosophy of [HHR13|. Yet actually demonstrating the extent of
cancellation required attention to different subtleties. And I engrossed myself into
these details.

Several months later, the question had totally shifted away from sign changes,
and instead focused on the Cusp Form analogy to the Gauss Circle problem in various
aspects, leading ultimately to the current line of research. In hindsight, it turns out
that our analysis of D(s,S;) and D(s,S; x S;) have had only limited success in
actually proving sign changes — but they are great tools otherwise.

Chapters 5 and 6 accomplished almost exactly what was originally intended.
In [HKKrL16], Hulse, Kiral, Kuan, and Lim studied a problem inspired from the
same work of Oh and Shah [OS14] that studied lattice points on hyperboloids through
ergodic methods. Shortly afterwards, a Kiral, Kuan, and I began to look at lattice
points on hyperboloids. Our initial investigations stalled, though 1 first learned

tJeff Hoffstein once told me that far too few published works describe the difference between
the original intent and the final version. I include that here, in this very informal section.
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much about the general techniques involving shifted convolution sums from those
first forays into this problem.

It is interesting to note that the combination of integral transforms that leads
to the main theorem of Chapter 5 was noticed by a combination of Kuan, Walker,
and I originally while we were writing our sign changes paper [HKLDW16]. We then
forgot about this technique until we began to struggle with our forthcoming work
on the Gauss Sphere problem, until Walker and I slowly realized that we were vastly
overcomplicating a particular difficulty.

Originally, the intention of Chapter 5 was simply to prove the meromorphic
continuation of the underlying Dirichlet series and to prove the smoothed sum result.
This is a rare case of proving exactly what I had set out to prove, and then a little
bit more.*

tAs opposed to the normal pattern of failing in the original goal, and then proving something
else entirely. As Jeff likes to say, it is important to be able to love the theorem that you can prove,
as rarely can we prove the theorems that we love.
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