
THE ODD FIBONACCI ZETA FUNCTION

DAVID LOWRY-DUDA

Abstract. We look at the (odd) Fibonacci zeta function and comment briefly
on the behavior of its zeros and poles.

1. Introduction

In forthcoming work [AKLDW24a, AKLDW24b] with my collaborators Eran,
Chan, and Alex, we describe different ways to understand the Fibonacci zeta
function

ZFib(s) := ∑
n≥1

1
F(n)s = 1+1+ 1

2s +
1
3s +·· ·

and certain generalizations associated to real quadratic fields. I gave a talk [LD20b]
about this in 2020 and it’s sat in various states since then.

The focus of our forthcoming papers is that these objects (and their gener-
alizations) can be understood in several different ways — including one way
through modular forms! This is surprising and interesting.

This note is not as surprising nor as deep. In this focused technical note,
I consider the question of studying the zeros and plot of the Fibonacci zeta
function.

Actually, I restrict my attention to the odd Fibonacci zeta function

Z(s) := Zodd
Fib (s)= ∑

n≥1

1
F(2n−1)s ,

consisting of odd-indexed terms of the Fibonacci zeta function. Although it’s
possible to study the whole Fibonacci zeta function (or alternately just the even-
indexed terms, the even Fibonacci zeta function), the odd Fibonacci zeta func-
tion has a simple analytic description and behaves in many way like a simplest
component.

In our work, we prove the following continuation.

Theorem 1. Write ε = 1+p5
2 . Then for all s ∈ C away from poles of the sum-

mands,

Z(s) := Zodd
Fib (s)= 5s/2

8Γ(s) logε

∑
m∈Z

(−1)mΓ
(s
2
+ πim

2logε

)
Γ
(s
2
− πim

2logε

)
. (1)

I take this for granted and defer the proof to our forthcoming work.
This continuation shows many properties. There are trivial zeros (coming

from poles of Γ(s)) that are reminiscent of the trivial zeros of the standard Rie-
mann zeta function, ζ(s); and there is a half-lattice of poles from the other
Gamma functions. Other than that, this is a Dirichlet series with meromor-
phic continuation.

Date: December 4, 2024.
This work was supported by the Simons Collaboration in Arithmetic Geometry, Number The-

ory, and Computation via the Simons Foundation grant 546235.
1

THE ODD FIBONACCI ZETA FUNCTION 2

It is easy to write down Dirichlet series, but a random Dirichlet series will
almost surely have a natural boundary on the abscissa of convergence. Dirichlet
series with continuation are special.

On the other hand, I’ve almost always studied automorphic L-functions, which
are the nicest possible family of Dirichlet series.

We examine two guiding questions in this note:
(1) What does Z(s) look like?
(2) Where are its zeros?

Through this exploration, we might build up additional intuition. If we only
look at the nicest possible Dirichlet series, we can forget what makes them
special or what properties actually distinguish them.

2. Making Plots

From (1) and Stirling’s formula, it’s clear that the summands decay extremely
quickly in m. Using only the first 2|Im t| summands will be sufficient. I always
use at least 20 to prevent over approximating. Thus making a plot of Z(s) re-
duces to quickly computing lots of Gamma functions, adding them together, and
then visualizing the result.

I typically use Sagemath [Sag20] for plots of complex functions (especially as
I wrote the complex plotting routines in [LD20a]). But it turns out that sage is
stunningly slow at making nice plots of Z(s).

So instead, I describe here a simple implementation in C++ (with plotting in
python). This takes two steps.

(1) First, compute an approximation of Z(s) on a square grid of points.
(2) Then import this grid of points into python for plotting.

2.1. Computing Z(s) on a mesh. The only nontrivial computational compo-
nent is computing the gamma function at complex arguments. There are many
implementations, but I tend to use arblib (now part of flintarb) [Joh17] for
all sorts of special functions, unless it’s not sufficient for some reason.

Remark 2. arb gives provably strong results and typically works in interval
arithmetic. This takes additional work. Here I immediately throw away the
intervals and just use the midpoint approximations. This is wasteful, but arb
is fast and correct. What more could I ask for?

I use acb.h and acb_gamma from arb.
1 #include <complex>

2 #include <acb.h>

3 #include <arb.h>

4 #include <arf.h>

5

6 std::complex<double> gamma(const std::complex<double>& z) {

7 const slong prec = 53;

8 acb_t zz, res; acb_init(zz); acb_init(res);

9 acb_set_d_d(zz, z.real(), z.imag());

10 acb_gamma(res, zz, prec);

11 double real = arf_get_d(

12 arb_midref(acb_realref(res)), ARF_RND_NEAR

13);

14 double imag = arf_get_d(

15 arb_midref(acb_imagref(res)), ARF_RND_NEAR

THE ODD FIBONACCI ZETA FUNCTION 3

16);

17 acb_clear(zz); acb_clear(res);

18 return std::complex<double>(real, imag);

19 }

In practice, gamma shadows a common map, so I actually put this in my own
namespace dld::gamma.

Computing Z(s) is now completely routine. Take m up to max
(
20,

⌈|Im(s)|⌉)
in (1) and add them up. Complete code is included in the appendix.

Making the Mesh. I use a slightly nontrivial way to compute the grid itself —
nontrivial because I use multithreading to make this a parallel computation.

The overall structure is simple: divide the rows into number-of-threads

many groups and then assign appropriate rows to each thread. For simplicity I
have each thread write its rows to a separate temporary file and then combine
them together afterwards.

This is my extremely simple form of multithreading. If some rows are far
more computationally intense (which they are), then this won’t evenly distrib-
ute computational load. But the naive independence means that I don’t have
to worry about shared memory or mutexes or other concurrency problems. A
small possible improvement would be to split into more chunks and have a
thread pool, but that added complexity doesn’t seem worth it to me.

Regardless, the output is a CSV containing (x, y,value) rows. I use two vari-
ants: one where the values are arg(Z(x+ i y)) and the other where the values
are the pair

(
Re(Z(x+ i y)),Im(Z(x+ i y))

)
2.2. Plotting the data. Perhaps the most obvious way to plot the resulting
data would be to assign your domain coloring (cf. [LD21], or https://en.wikipedia.
org/wiki/Domain_coloring, or the beautiful visualizations of Frank Farris)
and then color each computed point. Unfortunately, this requires an enor-
mously dense grid of computed pixels to make a good looking plot.

Instead, we interpolate between computed pixels. And by “we”, I mean matplotlib,
as this is implemented with various interpolation algorithms in imshow.

Alternately, to plot lines when the real or imaginary parts are 0, we can use
matplotlib’s contour, which implements a marching squares algorithm for
contour evaluation.

Both approaches can introduce artifacts. Fortunately, we are plotting holo-
morphic functions and the local behavior is either tame or too complex for any
plotting method to have a chance (in practice). And in practice the viewer can
detect when an artifact is introduced because it looks funny.

The broad look of these plotting routines in python look like the following.
1 # x_vals, y_vals, arg_vals, real_vals, imag_vals from CSV

2 import matplotlib.pyplot as plt

3

4 ## I stored these in most significant bit order, hence 'F'

5 arg_grid = arg_vals.reshape((grid_size, grid_size), order='F')

6 plt.imshow(arg_grid,

7 extent=[x_vals.min(), x_vals.max(),

8 y_vals.min(), y_vals.max()],

9 origin='lower', interpolation="catmul")

10

11 # Or, for contours #

12 plt.contour(imag_grid, colors="#f9ae54",

https://en.wikipedia.org/wiki/Domain_coloring
https://en.wikipedia.org/wiki/Domain_coloring

THE ODD FIBONACCI ZETA FUNCTION 4

13 extent=[x_vals.min(), x_vals.max(),

14 y_vals.min(), y_vals.max()],

15 origin="lower")

16 plt.contour(real_grid, colors="#0482d7",

17 extent=[x_vals.min(), x_vals.max(),

18 y_vals.min(), y_vals.max()],

19 origin="lower")

These produce the images in Figure 1. The argument plot in the Figure uses
a colormap that is discontinuous at the boundary, which (in my normalization)
amounts to a light-dark discotinuity when the imaginary part is 0.

3. Comments on the Plots and Zeros

I chose to plot in the rectangle with opposite vertices −35−5i and 5+35i.
The aspect ratio is 1 because I almost always want my aspect ratio to be 1. The
odd Fibonacci zeta function Z(s) is rather boring for Re s > 0 and antisymmetric
over the real axis, so it’s not worth including too much in those directions.

We know that Z(s) has a half-lattice of poles, so we expect the lattice like
regularity. We also understand the alternating zeros and poles on the real
line.

But it turns out that there seems to be approximately one zero rather close
to every pole.

Initially I thought this was surprising. But the zero and polar behavior is
largely constrained by Jensen’s Formula. I state it in two forms (both of which
I learned as Jensen’s Formula as a grad student).

Theorem 3 (Jensen’s Formula V1). Let f ̸≡ 0 be meromorphic on the closed
disk BR(0). Let a1, . . . ,ap denote the zeros of f in BR(0), counting multiplicities,
and let b1, . . . ,bq denote the poles in BR(0), also with multiplicities. Then for
any z in |z| < R which is not a zero or a pole,

log| f (z)| =
∫ 2π

0

R2 −|z|2
|Reiθ− z|2 log| f (Reiθ)|dθ

2π

−
p∑

i=1
log

∣∣∣∣ R2 −ai z
R(z−ai)

∣∣∣∣+ q∑
j=1

log

∣∣∣∣∣ R2 −b j z
R(z−b j)

∣∣∣∣∣ .

Theorem 4 (Jensen’s Formula V2). With the same notation as above, except
omitting zeros or poles at z = 0; let f (z) = c f zord(0) + . . ., where c f is the leading
nonzero coefficient of the Laurent expansion around 0. Then

log|c f | =
∫ 2π

0
log| f (Reiθ)|dθ

2π
−

p∑
i=1

log
∣∣∣∣ R
ai

∣∣∣∣+ q∑
j=1

log
∣∣∣∣ R
b j

∣∣∣∣− (ord(0)) logR. (2)

The second form comes essentially from expanding at z = 0 after modifying
and removing the zero/polar behavior there.

The point is that Z(s) grows too slowly to have interesting polar or zero be-
havior. Rearranging (2) and estimating growth, we observe that

−
p∑

i=1
log

∣∣∣∣ R
ai

∣∣∣∣+ q∑
j=1

log
∣∣∣∣ R
b j

∣∣∣∣≪ logR.

(I use ≪ here to mean that the LHS is bounded in magnitude and not merely
bounded above). There are approximately R2 poles within R of the origin, in a
half-lattice. In order to counteract this growth, there must be regularly spaced
zeros as well.

THE ODD FIBONACCI ZETA FUNCTION 5

Figure 1. Interpolated imshow and contour plots of Z(s). The
last plot is the combined plot.

It’s probably possible to say more about the distribution. I suspect that per-
forming argument-principle type evaluation would show that the difference in
the number of zeros and poles in a circle is bounded by O(logR), but I don’t
carry out this analysis.

3.1. Specific Zeros. Do the zeros have any meaning? Should we be able to
predict them individually, as opposed to in distribution?

As a first step, we compute a couple of zeros using Newton’s method in Fig-
ure 2.

THE ODD FIBONACCI ZETA FUNCTION 6

0.41054841 + 5.80204742i
0.82209560 + 13.5268604i

-0.32303194 + 19.0607822i
0.13195381 + 21.8573826i
0.23103157 + 25.7125161i

Figure 2. The first five zeros corresponding to the first five
poles of Z(s).

We make several remarks.
First, these seem to be where we expect from the plots.
Second, there aren’t obvious patterns or regularities in the real or imaginary

parts (aside from being spaced about as far apart as the poles). Conceivably,
these could be algebraic overQ[

p
5,log(ϕ),π]. Small tests don’t support this. (It

would not be hard to compute these and many more to much higher precision,
and then do a more sophisticated analysis. I don’t do this).

Third, several zeros occur in the region of absolute convergence of the under-
lying Dirichlet series. As Dirichlet series in the region of absolute convergence
behave like almost periodic functions, we know there are at least ≍ T zeros of
height up to T also in the region of absolute convergence, distributed approxi-
mately periodically (cf. [Bes54]).

That’s the most I know how to say about their regularity.

THE ODD FIBONACCI ZETA FUNCTION 7

Appendix A. Code

A.1. Gamma Computation. The header gamma.hpp:
1 // gamma.hpp

2 #ifndef DLD_GAMMA_HPP

3 #define DLD_GAMMA_HPP

4

5 #include <complex>

6

7 namespace dld {

8 std::complex<double> gamma(const std::complex<double>& z);

9 }

10 #endif

And the code, largely as shown above.
1 // gamma.cpp

2 #include "gamma.hpp"

3 #include <acb.h>

4 #include <arb.h>

5 #include <arf.h>

6

7 namespace dld {

8 std::complex<double> gamma(const std::complex<double>& z) {

9 const slong prec = 53;

10 acb_t zz, res;

11 acb_init(zz); acb_init(res);

12

13 acb_set_d_d(zz, z.real(), z.imag());

14 acb_gamma(res, zz, prec);

15

16 double real = arf_get_d(

17 arb_midref(acb_realref(res)),

18 ARF_RND_NEAR

19);

20 double imag = arf_get_d(

21 arb_midref(acb_imagref(res)),

22 ARF_RND_NEAR

23);

24 acb_clear(zz); acb_clear(res);

25 return std::complex<double>(real, imag);

26 }

27 }

A.2. Fibonacci Zeta. I have a minimal header.
1 // fibo.hpp

2 #ifndef DLD_FIBO_HPP

3 #define DLD_FIBO_HPP

4

5 #include <complex>

6

7 std::complex<double> zodd_smart(const std::complex<double> & s);

8

9 #endif

THE ODD FIBONACCI ZETA FUNCTION 8

The code looks annoying only because C++ can be verbose. It’s precisely (1),
using standard library computations and the gamma function computation above.

1 // fibo.cpp

2 #include "fibo.hpp"

3 #include "gamma.hpp"

4 #include <cmath>

5 #include <complex>

6

7 typedef std::complex<double> complex;

8 const long double PI = 3.141592653589793;

9

10 // log((1 + sqrt(5))/2)

11 const double logeps = 0.481211825059603;

12 const double sqrt5 = 2.23606797749979;

13

14 complex compute_argument(const complex & s, int m) {

15 return s/2.0 + complex(0.0, PI * m / (2*logeps));

16 }

17

18 complex summand(const complex & s, int m) {

19 complex ret;

20 if (m % 2 == 0) { ret = 1.0; }

21 else { ret = -1.0; }

22 ret *= dld::gamma(compute_argument(s, m));

23 ret *= dld::gamma(compute_argument(s, -m));

24 return ret;

25 }

26

27 complex zodd(const complex & s, int limit=1000) {

28 const double logsqrt5 = std::log(sqrt5);

29 complex ret = std::exp(s * logsqrt5);

30 ret /= (8.0 * dld::gamma(s) * logeps);

31 complex sum = summand(s, 0);

32 for (int m = 1; m < limit; m++) {

33 sum += 2.0 * summand(s, m);

34 }

35 return ret * sum;

36 }

37

38 complex zodd_smart(const complex & s) {

39 int limit = static_cast<int>(std::ceil(std::abs(s.imag())));

40 if (limit < 20) { limit = 20; }

41 return zodd(s, 2*limit);

42 }

A.3. Making the grid. I use two versions of this, depending on whether I’m
making an argument plot or a contour plot. The commented out lines indicate
the other version.

1 #include "fibo.hpp"

2 #include <iostream>

3 #include <fstream>

4 #include <complex>

THE ODD FIBONACCI ZETA FUNCTION 9

5 #include <thread>

6 #include <vector>

7 #include <string>

8

9 void write_grid_chunk(int start_row, int end_row, int grid_size,

10 double min_xval, double max_xval,

11 double min_yval, double max_yval,

12 const std::string& chunk_filename) {

13 std::ofstream file(chunk_filename);

14

15 // file << "real,imag,arg\n";

16 file << "real,imag,rpart,ipart\n";

17 // Iterate over the assigned grid chunk

18 for (int i = start_row; i < end_row; ++i) {

19 for (int j = 0; j < grid_size; ++j) {

20 double real_part = min_xval + (max_xval - min_xval) * i / (grid_size - 1);

21 double imag_part = min_yval + (max_yval - min_yval) * j / (grid_size - 1);

22 std::complex<double> s(real_part, imag_part);

23 std::complex<double> result = zodd_smart(s);

24 // double arg_normalized = (std::arg(result) + PI) / (2 * PI);

25 // file << real_part << "," << imag_part << "," << arg << "\n";

26 double rpart = std::real(result);

27 double ipart = std::imag(result);

28 file << real_part << "," << imag_part << "," << rpart << "," << ipart << "\n";

29 }

30 }

31 }

32

33 // Function to combine all chunk files into the final output file

34 void combine_files(const std::string& output_filename, int num_chunks) {

35 std::ofstream outfile(output_filename);

36 std::string chunk_filename;

37 // Write the header

38 //outfile << "real,imag,arg\n";

39 outfile << "real,imag,rpart,ipart\n";

40

41 // Combine the chunk files

42 for (int i = 0; i < num_chunks; ++i) {

43 chunk_filename = "args_chunk_" + std::to_string(i) + ".csv";

44 std::ifstream infile(chunk_filename);

45 std::string line;

46 // Skip the header line of the chunk file

47 std::getline(infile, line);

48 // Copy the rest of the chunk file to the final output file

49 while (std::getline(infile, line)) {

50 outfile << line << "\n";

51 }

52 infile.close();

53 }

54 outfile.close();

55 }

56

THE ODD FIBONACCI ZETA FUNCTION 10

57 void save_arggrid_to_file(int grid_size,

58 double min_xval, double max_xval,

59 double min_yval, double max_yval,

60 const std::string& filename) {

61 int num_threads = 6;

62 // Divide the grid rows by the number of threads

63 int chunk_size = grid_size / num_threads;

64 std::vector<std::thread> threads;

65 for (int t = 0; t < num_threads; ++t) {

66 int start_row = t * chunk_size;

67 int end_row = (t == num_threads - 1) ? grid_size : (t + 1) * chunk_size;

68 std::string chunk_filename = "args_chunk_" + std::to_string(t) + ".csv";

69

70 // Start a new thread to write a portion of the grid

71 threads.push_back(

72 std::thread(write_grid_chunk, start_row, end_row,

73 grid_size, min_xval, max_xval, min_yval, max_yval,

74 chunk_filename)

75);

76 }

77

78 for (auto& t : threads) {

79 t.join();

80 }

81

82 combine_files(filename, num_threads);

83

84 // Clean up chunk files

85 for (int i = 0; i < num_threads; ++i) {

86 std::string chunk_filename = "args_chunk_" + std::to_string(i) + ".csv";

87 std::remove(chunk_filename.c_str());

88 }

89

90 std::cout << "Data saved to " << filename << std::endl;

91 }

92

93 int main() {

94 int grid_size = 400;

95 double min_xval = -35.0;

96 double max_xval = 5.0;

97 double min_yval = -5.0;

98 double max_yval = 35.0;

99 std::string filename = "sizes.csv";

100 save_arggrid_to_file(grid_size, min_xval, max_xval, min_yval, max_yval, filename);

101 return 0;

102 }

A.4. Plotting Code.
1 import numpy as np

2 import matplotlib.pyplot as plt

3 import csv

4

THE ODD FIBONACCI ZETA FUNCTION 11

5 def plot_contours(filename):

6 x_vals = []

7 y_vals = []

8 r_vals = []

9 i_vals = []

10 with open(filename, 'r') as csvfile:

11 reader = csv.DictReader(csvfile)

12 for row in reader:

13 x_vals.append(float(row['real']))

14 y_vals.append(float(row['imag']))

15 r_vals.append(float(row['rpart']))

16 i_vals.append(float(row['ipart']))

17 # Convert to numpy arrays

18 x_vals = np.array(x_vals)

19 y_vals = np.array(y_vals)

20 r_vals = np.array(r_vals)

21 i_vals = np.array(i_vals)

22

23 # Reshape arg_vals into grid

24 grid_size = int(len(r_vals)**.5 + 0.5)

25 r_grid = r_vals.reshape((grid_size, grid_size), order='F')

26 i_grid = i_vals.reshape((grid_size, grid_size), order='F')

27

28 plt.figure(figsize=[10, 10])

29 plt.contour(i_grid, colors="#f9ae54",

30 extent=[x_vals.min(), x_vals.max(), y_vals.min(), y_vals.max()],

31 origin="lower")

32 plt.contour(r_grid, colors="#0482d7",

33 extent=[x_vals.min(), x_vals.max(), y_vals.min(), y_vals.max()],

34 origin="lower")

35 plt.tight_layout()

36 plt.savefig("plot.png")

37

38 plot_contours('sizes.csv')

References

[AKLDW24a] Eran Assaf, Chan Ieong Kuan, David Lowry-Duda, and Alexan-
der Walker. The Fibonacci zeta function and continuation, 2024.
Forthcoming. (Cited on page 1)

[AKLDW24b] Eran Assaf, Chan Ieong Kuan, David Lowry-Duda, and Alexan-
der Walker. The Fibonacci zeta function and modular forms,
2024. Forthcoming. (Cited on page 1)

[Bes54] Abram Samoilovitch Besicovitch. Almost periodic functions.
Dover New York, 1954. (Cited on page 6)

[Joh17] F. Johansson. Arb: efficient arbitrary-precision midpoint-radius
interval arithmetic. IEEE Transactions on Computers, 66:1281–
1292, 2017. (Cited on page 2)

THE ODD FIBONACCI ZETA FUNCTION 12

[LD20a] David Lowry-Duda. phase_mag_plot. https://github.com/

davidlowryduda/phase_mag_plot/, September 2020. [On-
line; Reference version at https://doi.org/10.5281/zenodo.
4035117]. (Cited on page 2)

[LD20b] David Lowry-Duda. The Fibonacci zeta func-
tion and modular forms. Talk at Darmouth,
available at https://davidlowryduda.com/

notes-from-a-talk-at-dartmouth-on-the-fibonacci-zeta-function/,
May 2020. (Cited on page 1)

[LD21] David Lowry-Duda. Visualizing modular forms. Talk
at Oregon, available at https://davidlowryduda.com/

wp-content/uploads/2021/05/visualizing_modular_

forms-compressed.pdf, May 2021. (Cited on page 3)
[Sag20] Sage Developers. SageMath, the Sage Mathematics Software

System (Version 8.8), 2020. https://www.sagemath.org. (Cited
on page 2)

https://github.com/davidlowryduda/phase_mag_plot/
https://github.com/davidlowryduda/phase_mag_plot/
https://doi.org/10.5281/zenodo.4035117
https://doi.org/10.5281/zenodo.4035117
https://davidlowryduda.com/notes-from-a-talk-at-dartmouth-on-the-fibonacci-zeta-function/
https://davidlowryduda.com/notes-from-a-talk-at-dartmouth-on-the-fibonacci-zeta-function/
https://davidlowryduda.com/wp-content/uploads/2021/05/visualizing_modular_forms-compressed.pdf
https://davidlowryduda.com/wp-content/uploads/2021/05/visualizing_modular_forms-compressed.pdf
https://davidlowryduda.com/wp-content/uploads/2021/05/visualizing_modular_forms-compressed.pdf

	1. Introduction
	2. Making Plots
	2.1. Computing Z(s) on a mesh
	Making the Mesh
	2.2. Plotting the data

	3. Comments on the Plots and Zeros
	3.1. Specific Zeros

	Appendix A. Code
	A.1. Gamma Computation
	A.2. Fibonacci Zeta
	A.3. Making the grid
	A.4. Plotting Code

	References

